MolmoE-1B-0924 / README.md
soldni's picture
Update README.md
8a83ff8 verified
|
raw
history blame
3.44 kB
---
license: apache-2.0
language:
- en
base_model:
- openai/clip-vit-large-patch14-336
- allenai/OLMoE-1B-7B-0924
datasets:
- allenai/OLMoE-mix-0924
pipeline_tag: image-text-to-text
tags:
- multimodal
- moe
- olmo
- olmoe
- molmo
- molmoe
---
<img src="molmo_logo.png" alt="Logo for the Molmo Project" style="width: auto; height: 50px;">
# MolmoE 1B
Molmo is an open vision-language model developed by the Allen Institute for AI. Molmo models are trained on PixMo, a dataset of 1 million, highly-curated image-text pairs. It has state-of-the-art performance among multimodal models with a similar size while being fully open-source. You can find all models in the Molmo family [here](https://huggingface.co/collections/allenai/molmo-66f379e6fe3b8ef090a8ca19).
MolmoE-1B is a multimodal Mixture-of-Experts LLM with 1.5B active and 7.2B total parameters released in September 2024 (0924) based on [OLMoE-1B-7B-0924](https://huggingface.co/allenai/OLMoE-1B-7B-0924).
It nearly matches the performance of GPT-4V on both academic benchmarks and human evaluation, and achieves state-of-the-art performance among similarly-sized open multimodal models.
This checkpoint is a **preview** of the Molmo release. All artifacts used in creating Molmo (PixMo dataset, training code, evaluations, intermediate checkpoints) will be made available at a later date, furthering our commitment to open-source AI development and reproducibility.
**[Sign up here](https://docs.google.com/forms/d/e/1FAIpQLSdML1MhNNBDsCHpgWG65Oydg2SjZzVasyqlP08nBrWjZp_c7A/viewform)** to be the first to know when artifacts are released.
## Quick Start
To run MolmoE, first install dependencies:
```bash
pip install einops tensorflow torchvision
```
Then, follow these steps:
```python
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig
from PIL import Image
import requests
# load the processor
processor = AutoProcessor.from_pretrained(
'allenai/MolmoE-1B-0924',
trust_remote_code=True,
torch_dtype='auto',
device_map='auto'
)
# load the model
model = AutoModelForCausalLM.from_pretrained(
'allenai/MolmoE-1B-0924',
trust_remote_code=True,
torch_dtype='auto',
device_map='auto'
)
# process the image and text
inputs = processor.process(
images=[Image.open(requests.get("https://picsum.photos/id/237/536/354", stream=True).raw)],
text="Describe this image."
)
# move inputs to the correct device and make a batch of size 1
inputs = {k: v.to(model.device).unsqueeze(0) for k, v in inputs.items()}
# generate output; maximum 200 new tokens; stop generation when <|endoftext|> is generated
output = model.generate_from_batch(
inputs,
GenerationConfig(max_new_tokens=200, stop_strings="<|endoftext|>"),
tokenizer=processor.tokenizer
)
# only get generated tokens; decode them to text
generated_tokens = output[0,inputs['input_ids'].size(1):]
generated_text = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True)
# print the generated text
print(generated_text)
# >>> This photograph captures an adorable black Labrador puppy sitting on a weathered
# wooden deck. The deck's planks, which are a mix of light and dark brown with ...
```
## License and Use
This model is licensed under Apache 2.0. It is intended for research and educational use.
For more information, please see our [Responsible Use Guidelines](https://allenai.org/responsible-use).