alirzb's picture
Model save
7319877 verified
metadata
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: IDAT_aug_red_696_Wav2Vec
    results: []

IDAT_aug_red_696_Wav2Vec

This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5564
  • Accuracy: 0.7667

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6862 0.97 17 0.6526 0.675
0.609 2.0 35 0.6533 0.6917
0.5659 2.97 52 0.7129 0.6583
0.6223 4.0 70 0.5106 0.7833
0.5163 4.97 87 0.7914 0.7
0.6306 6.0 105 0.5960 0.75
0.5651 6.97 122 0.7364 0.5583
0.7081 8.0 140 0.7070 0.5
0.699 8.97 157 0.6951 0.5
0.6958 10.0 175 0.6934 0.5
0.6978 10.97 192 0.6916 0.5
0.6786 12.0 210 0.6940 0.5
0.6981 12.97 227 0.6932 0.5
0.6931 14.0 245 0.6933 0.5
0.6939 14.97 262 0.6931 0.5
0.6935 16.0 280 0.6931 0.5
0.6972 16.97 297 0.6931 0.5
0.6935 18.0 315 0.6931 0.5
0.6931 18.97 332 0.6951 0.5
0.6955 20.0 350 0.6921 0.7
0.6992 20.97 367 0.6843 0.5
0.6785 22.0 385 0.6919 0.5
0.6661 22.97 402 0.6317 0.6417
0.597 24.0 420 0.5620 0.75
0.5849 24.97 437 0.6103 0.75
0.5955 26.0 455 0.6245 0.725
0.4777 26.97 472 0.5215 0.7833
0.4726 28.0 490 0.5657 0.775
0.4487 28.97 507 0.5306 0.7833
0.4478 30.0 525 0.6591 0.7333
0.5039 30.97 542 0.5304 0.7833
0.5173 32.0 560 0.7111 0.7
0.5266 32.97 577 0.5587 0.7667
0.4677 34.0 595 0.5515 0.7667
0.4775 34.97 612 0.5116 0.7917
0.4651 36.0 630 0.5450 0.7667
0.4738 36.97 647 0.5371 0.7833
0.4862 38.0 665 0.5497 0.7667
0.4695 38.86 680 0.5564 0.7667

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.2
  • Datasets 2.16.1
  • Tokenizers 0.13.3