alirzb's picture
Model save
7319877 verified
|
raw
history blame
3.83 kB
---
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: IDAT_aug_red_696_Wav2Vec
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# IDAT_aug_red_696_Wav2Vec
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5564
- Accuracy: 0.7667
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 40
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6862 | 0.97 | 17 | 0.6526 | 0.675 |
| 0.609 | 2.0 | 35 | 0.6533 | 0.6917 |
| 0.5659 | 2.97 | 52 | 0.7129 | 0.6583 |
| 0.6223 | 4.0 | 70 | 0.5106 | 0.7833 |
| 0.5163 | 4.97 | 87 | 0.7914 | 0.7 |
| 0.6306 | 6.0 | 105 | 0.5960 | 0.75 |
| 0.5651 | 6.97 | 122 | 0.7364 | 0.5583 |
| 0.7081 | 8.0 | 140 | 0.7070 | 0.5 |
| 0.699 | 8.97 | 157 | 0.6951 | 0.5 |
| 0.6958 | 10.0 | 175 | 0.6934 | 0.5 |
| 0.6978 | 10.97 | 192 | 0.6916 | 0.5 |
| 0.6786 | 12.0 | 210 | 0.6940 | 0.5 |
| 0.6981 | 12.97 | 227 | 0.6932 | 0.5 |
| 0.6931 | 14.0 | 245 | 0.6933 | 0.5 |
| 0.6939 | 14.97 | 262 | 0.6931 | 0.5 |
| 0.6935 | 16.0 | 280 | 0.6931 | 0.5 |
| 0.6972 | 16.97 | 297 | 0.6931 | 0.5 |
| 0.6935 | 18.0 | 315 | 0.6931 | 0.5 |
| 0.6931 | 18.97 | 332 | 0.6951 | 0.5 |
| 0.6955 | 20.0 | 350 | 0.6921 | 0.7 |
| 0.6992 | 20.97 | 367 | 0.6843 | 0.5 |
| 0.6785 | 22.0 | 385 | 0.6919 | 0.5 |
| 0.6661 | 22.97 | 402 | 0.6317 | 0.6417 |
| 0.597 | 24.0 | 420 | 0.5620 | 0.75 |
| 0.5849 | 24.97 | 437 | 0.6103 | 0.75 |
| 0.5955 | 26.0 | 455 | 0.6245 | 0.725 |
| 0.4777 | 26.97 | 472 | 0.5215 | 0.7833 |
| 0.4726 | 28.0 | 490 | 0.5657 | 0.775 |
| 0.4487 | 28.97 | 507 | 0.5306 | 0.7833 |
| 0.4478 | 30.0 | 525 | 0.6591 | 0.7333 |
| 0.5039 | 30.97 | 542 | 0.5304 | 0.7833 |
| 0.5173 | 32.0 | 560 | 0.7111 | 0.7 |
| 0.5266 | 32.97 | 577 | 0.5587 | 0.7667 |
| 0.4677 | 34.0 | 595 | 0.5515 | 0.7667 |
| 0.4775 | 34.97 | 612 | 0.5116 | 0.7917 |
| 0.4651 | 36.0 | 630 | 0.5450 | 0.7667 |
| 0.4738 | 36.97 | 647 | 0.5371 | 0.7833 |
| 0.4862 | 38.0 | 665 | 0.5497 | 0.7667 |
| 0.4695 | 38.86 | 680 | 0.5564 | 0.7667 |
### Framework versions
- Transformers 4.32.1
- Pytorch 2.1.2
- Datasets 2.16.1
- Tokenizers 0.13.3