Ad-Corre / train.py
daliprf
init
1eced3c
raw
history blame
18 kB
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import math
from datetime import datetime
from sklearn.utils import shuffle
from sklearn.model_selection import train_test_split
from numpy import save, load, asarray
import csv
from skimage.io import imread
import pickle
from sklearn.metrics import accuracy_score
import os
import time
from AffectNetClass import AffectNet
from RafdbClass import RafDB
from FerPlusClass import FerPlus
from config import DatasetName, AffectnetConf, InputDataSize, LearningConfig, DatasetType, RafDBConf, FerPlusConf
from cnn_model import CNNModel
from custom_loss import CustomLosses
from data_helper import DataHelper
from dataset_class import CustomDataset
class TrainModel:
def __init__(self, dataset_name, ds_type, weights='imagenet', lr=1e-3, aug=True):
self.dataset_name = dataset_name
self.ds_type = ds_type
self.weights = weights
self.lr = lr
self.base_lr = 1e-5
self.max_lr = 5e-4
if dataset_name == DatasetName.fer2013:
self.drop = 0.1
self.epochs_drop = 5
if aug:
self.img_path = FerPlusConf.aug_train_img_path
self.annotation_path = FerPlusConf.aug_train_annotation_path
self.masked_img_path = FerPlusConf.aug_train_masked_img_path
else:
self.img_path = FerPlusConf.no_aug_train_img_path
self.annotation_path = FerPlusConf.no_aug_train_annotation_path
self.val_img_path = FerPlusConf.test_img_path
self.val_annotation_path = FerPlusConf.test_annotation_path
self.eval_masked_img_path = FerPlusConf.test_masked_img_path
self.num_of_classes = 7
self.num_of_samples = None
elif dataset_name == DatasetName.rafdb:
self.drop = 0.1
self.epochs_drop = 5
if aug:
self.img_path = RafDBConf.aug_train_img_path
self.annotation_path = RafDBConf.aug_train_annotation_path
self.masked_img_path = RafDBConf.aug_train_masked_img_path
else:
self.img_path = RafDBConf.no_aug_train_img_path
self.annotation_path = RafDBConf.no_aug_train_annotation_path
self.val_img_path = RafDBConf.test_img_path
self.val_annotation_path = RafDBConf.test_annotation_path
self.eval_masked_img_path = RafDBConf.test_masked_img_path
self.num_of_classes = 7
self.num_of_samples = None
elif dataset_name == DatasetName.affectnet:
self.drop = 0.1
self.epochs_drop = 5
if ds_type == DatasetType.train:
self.img_path = AffectnetConf.aug_train_img_path
self.annotation_path = AffectnetConf.aug_train_annotation_path
self.masked_img_path = AffectnetConf.aug_train_masked_img_path
self.val_img_path = AffectnetConf.eval_img_path
self.val_annotation_path = AffectnetConf.eval_annotation_path
self.eval_masked_img_path = AffectnetConf.eval_masked_img_path
self.num_of_classes = 8
self.num_of_samples = AffectnetConf.num_of_samples_train
elif ds_type == DatasetType.train_7:
if aug:
self.img_path = AffectnetConf.aug_train_img_path_7
self.annotation_path = AffectnetConf.aug_train_annotation_path_7
self.masked_img_path = AffectnetConf.aug_train_masked_img_path_7
else:
self.img_path = AffectnetConf.no_aug_train_img_path_7
self.annotation_path = AffectnetConf.no_aug_train_annotation_path_7
self.val_img_path = AffectnetConf.eval_img_path_7
self.val_annotation_path = AffectnetConf.eval_annotation_path_7
self.eval_masked_img_path = AffectnetConf.eval_masked_img_path_7
self.num_of_classes = 7
self.num_of_samples = AffectnetConf.num_of_samples_train_7
def train(self, arch, weight_path):
""""""
'''create loss'''
c_loss = CustomLosses()
'''create summary writer'''
summary_writer = tf.summary.create_file_writer(
"./train_logs/fit/" + datetime.now().strftime("%Y%m%d-%H%M%S"))
start_train_date = datetime.now().strftime("%Y%m%d-%H%M%S")
'''making models'''
model = self.make_model(arch=arch, w_path=weight_path)
'''create save path'''
if self.dataset_name == DatasetName.affectnet:
save_path = AffectnetConf.weight_save_path + start_train_date + '/'
elif self.dataset_name == DatasetName.rafdb:
save_path = RafDBConf.weight_save_path + start_train_date + '/'
elif self.dataset_name == DatasetName.fer2013:
save_path = FerPlusConf.weight_save_path + start_train_date + '/'
if not os.path.exists(save_path):
os.makedirs(save_path)
'''create sample generator'''
dhp = DataHelper()
''' Train Generator'''
img_filenames, exp_filenames = dhp.create_generator_full_path(img_path=self.img_path,
annotation_path=self.annotation_path)
'''create dataset'''
cds = CustomDataset()
ds = cds.create_dataset(img_filenames=img_filenames,
anno_names=exp_filenames,
is_validation=False)
'''create train configuration'''
step_per_epoch = len(img_filenames) // LearningConfig.batch_size
gradients = None
virtual_step_per_epoch = LearningConfig.virtual_batch_size // LearningConfig.batch_size
'''create optimizer'''
optimizer = tf.keras.optimizers.Adam(self.lr, decay=1e-5)
'''start train:'''
all_gt_exp = []
all_pr_exp = []
for epoch in range(LearningConfig.epochs):
ce_weight = 2
batch_index = 0
for img_batch, exp_batch in ds:
'''since the calculation of the confusion matrix will be time-consuming,
we only save 1000 labels each time. Moreover, this help us to be more qiuck on updates
'''
all_gt_exp, all_pr_exp = self._update_all_labels_arrays(all_gt_exp, all_pr_exp)
'''load annotation and images'''
'''squeeze'''
exp_batch = exp_batch[:, -1]
img_batch = img_batch[:, -1, :, :]
'''train step'''
step_gradients, all_gt_exp, all_pr_exp = self.train_step(epoch=epoch, step=batch_index,
total_steps=step_per_epoch,
img_batch=img_batch,
anno_exp=exp_batch,
model=model, optimizer=optimizer,
c_loss=c_loss,
ce_weight=ce_weight,
summary_writer=summary_writer,
all_gt_exp=all_gt_exp,
all_pr_exp=all_pr_exp)
batch_index += 1
'''evaluating part'''
global_accuracy, conf_mat, avg_acc = self._eval_model(model=model)
'''save weights'''
save_name = save_path + '_' + str(epoch) + '_' + self.dataset_name + '_AC_' + str(global_accuracy)
model.save(save_name + '.h5')
self._save_confusion_matrix(conf_mat, save_name + '.txt')
def train_step(self, epoch, step, total_steps, model, ce_weight,
img_batch, anno_exp, optimizer, summary_writer, c_loss, all_gt_exp, all_pr_exp):
with tf.GradientTape() as tape:
pr_data = model([img_batch], training=True)
exp_pr_vec = pr_data[0]
embeddings = pr_data[1:]
bs_size = tf.shape(exp_pr_vec, out_type=tf.dtypes.int64)[0]
loss_exp, accuracy = c_loss.cross_entropy_loss(y_pr=exp_pr_vec, y_gt=anno_exp,
num_classes=self.num_of_classes,
ds_name=self.dataset_name)
'''Feature difference loss'''
# embedding_similarity_loss = 0
embedding_similarity_loss = c_loss.embedding_loss_distance(embeddings=embeddings)
'''update confusion matrix'''
exp_pr = tf.constant([np.argmax(exp_pr_vec[i]) for i in range(bs_size)], dtype=tf.dtypes.int64)
tr_conf_matrix, all_gt_exp, all_pr_exp = c_loss.update_confusion_matrix(anno_exp, # real labels
exp_pr, # real labels
all_gt_exp,
all_pr_exp)
''' correlation between the embeddings'''
correlation_loss = c_loss.correlation_loss_multi(embeddings=embeddings,
exp_gt_vec=anno_exp,
exp_pr_vec=exp_pr_vec,
tr_conf_matrix=tr_conf_matrix)
'''mean loss'''
mean_correlation_loss = c_loss.mean_embedding_loss_distance(embeddings=embeddings,
exp_gt_vec=anno_exp,
exp_pr_vec=exp_pr_vec,
num_of_classes=self.num_of_classes)
lamda_param = 50
loss_total = lamda_param * loss_exp + \
embedding_similarity_loss + \
correlation_loss + \
mean_correlation_loss
# '''calculate gradient'''
gradients_of_model = tape.gradient(loss_total, model.trainable_variables)
# '''apply Gradients:'''
optimizer.apply_gradients(zip(gradients_of_model, model.trainable_variables))
# '''printing loss Values: '''
tf.print("->EPOCH: ", str(epoch), "->STEP: ", str(step) + '/' + str(total_steps),
' -> : accuracy: ', accuracy,
' -> : loss_total: ', loss_total,
' -> : loss_exp: ', loss_exp,
' -> : embedding_similarity_loss: ', embedding_similarity_loss,
' -> : correlation_loss: ', correlation_loss,
' -> : mean_correlation_loss: ', mean_correlation_loss)
with summary_writer.as_default():
tf.summary.scalar('loss_total', loss_total, step=epoch)
tf.summary.scalar('loss_exp', loss_exp, step=epoch)
tf.summary.scalar('correlation_loss', correlation_loss, step=epoch)
tf.summary.scalar('mean_correlation_loss', mean_correlation_loss, step=epoch)
tf.summary.scalar('embedding_similarity_loss', embedding_similarity_loss, step=epoch)
return gradients_of_model, all_gt_exp, all_pr_exp
def train_step_old(self, epoch, step, total_steps, model, ce_weight,
img_batch, anno_exp, optimizer, summary_writer, c_loss, all_gt_exp, all_pr_exp):
with tf.GradientTape() as tape:
# '''create annotation_predicted'''
# exp_pr, embedding = model([img_batch], training=True)
exp_pr_vec, embedding_class, embedding_mean, embedding_var = model([img_batch], training=True)
bs_size = tf.shape(exp_pr_vec, out_type=tf.dtypes.int64)[0]
# # '''CE loss'''
loss_exp, accuracy = c_loss.cross_entropy_loss(y_pr=exp_pr_vec, y_gt=anno_exp,
num_classes=self.num_of_classes,
ds_name=self.dataset_name)
#
loss_cls_mean, loss_cls_var, loss_mean_var = c_loss.embedding_loss_distance(
embedding_class=embedding_class,
embedding_mean=embedding_mean,
embedding_var=embedding_var,
bs_size=bs_size)
feature_diff_loss = loss_cls_mean + loss_cls_var + loss_mean_var
# correlation between the class_embeddings
cor_loss, all_gt_exp, all_pr_exp = c_loss.correlation_loss(embedding=embedding_class, # distribution
exp_gt_vec=anno_exp,
exp_pr_vec=exp_pr_vec,
num_of_classes=self.num_of_classes,
all_gt_exp=all_gt_exp,
all_pr_exp=all_pr_exp)
# correlation between the mean_emb_cor_loss
mean_emb_cor_loss, mean_emb_kl_loss = c_loss.mean_embedding_loss(embedding=embedding_mean,
exp_gt_vec=anno_exp,
exp_pr_vec=exp_pr_vec,
num_of_classes=self.num_of_classes)
mean_loss = mean_emb_cor_loss + 10 * mean_emb_kl_loss
var_emb_cor_loss, var_emb_kl_loss = c_loss.variance_embedding_loss(embedding=embedding_var,
exp_gt_vec=anno_exp,
exp_pr_vec=exp_pr_vec,
num_of_classes=self.num_of_classes)
var_loss = var_emb_cor_loss + 10 * var_emb_kl_loss
# '''total:'''
loss_total = 100 * loss_exp + cor_loss + 10 * feature_diff_loss + mean_loss + var_loss
# '''calculate gradient'''
gradients_of_model = tape.gradient(loss_total, model.trainable_variables)
# '''apply Gradients:'''
optimizer.apply_gradients(zip(gradients_of_model, model.trainable_variables))
# '''printing loss Values: '''
tf.print("->EPOCH: ", str(epoch), "->STEP: ", str(step) + '/' + str(total_steps),
' -> : accuracy: ', accuracy,
' -> : loss_total: ', loss_total,
' -> : loss_exp: ', loss_exp,
' -> : cor_loss: ', cor_loss,
' -> : feature_loss: ', feature_diff_loss,
' -> : mean_loss: ', mean_loss,
' -> : var_loss: ', var_loss)
with summary_writer.as_default():
tf.summary.scalar('loss_total', loss_total, step=epoch)
tf.summary.scalar('loss_exp', loss_exp, step=epoch)
tf.summary.scalar('loss_correlation', cor_loss, step=epoch)
return gradients_of_model, all_gt_exp, all_pr_exp
def _eval_model(self, model):
""""""
'''first we need to create the 4 bunch here: '''
'''for Affectnet, we need to calculate accuracy of each label and then total avg accuracy:'''
global_accuracy = 0
avg_acc = 0
conf_mat = []
if self.dataset_name == DatasetName.affectnet:
if self.ds_type == DatasetType.train:
affn = AffectNet(ds_type=DatasetType.eval)
else:
affn = AffectNet(ds_type=DatasetType.eval_7)
global_accuracy, conf_mat, avg_acc, precision, recall, fscore, support = \
affn.test_accuracy(model=model)
elif self.dataset_name == DatasetName.rafdb:
rafdb = RafDB(ds_type=DatasetType.test)
global_accuracy, conf_mat, avg_acc, precision, recall, fscore, support = rafdb.test_accuracy(model=model)
elif self.dataset_name == DatasetName.fer2013:
ferplus = FerPlus(ds_type=DatasetType.test)
global_accuracy, conf_mat, avg_acc, precision, recall, fscore, support = ferplus.test_accuracy(model=model)
print("================== global_accuracy =====================")
print(global_accuracy)
print("================== Average Accuracy =====================")
print(avg_acc)
print("================== Confusion Matrix =====================")
print(conf_mat)
return global_accuracy, conf_mat, avg_acc
def make_model(self, arch, w_path):
cnn = CNNModel()
model = cnn.get_model(arch=arch, num_of_classes=LearningConfig.num_classes, weights=self.weights)
if w_path is not None:
model.load_weights(w_path)
return model
def _save_confusion_matrix(self, conf_mat, save_name):
f = open(save_name, "a")
print(save_name)
f.write(np.array_str(conf_mat))
f.close()
def _update_all_labels_arrays(self, all_gt_exp, all_pr_exp):
if len(all_gt_exp) < LearningConfig.labels_history_frame:
return all_gt_exp, all_pr_exp
else: # remove the first batch:
return all_gt_exp[LearningConfig.batch_size:], all_pr_exp[LearningConfig.batch_size:]