|
--- |
|
license: other |
|
license_name: flux-1-dev-non-commercial-license |
|
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md |
|
language: |
|
- en |
|
base_model: black-forest-labs/FLUX.1-dev |
|
library_name: diffusers |
|
tags: |
|
- Text-to-Image |
|
- FLUX |
|
- Stable Diffusion |
|
pipeline_tag: text-to-image |
|
--- |
|
|
|
<div style="display: flex; justify-content: center; align-items: center;"> |
|
<img src="./images/images_alibaba.png" alt="alibaba" style="width: 20%; height: auto; margin-right: 5%;"> |
|
<img src="./images/images_alimama.png" alt="alimama" style="width: 20%; height: auto;"> |
|
</div> |
|
|
|
本仓库包含了由阿里妈妈创意团队开发的基于[FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev)模型的8步蒸馏版。 |
|
|
|
# 介绍 |
|
|
|
该模型是基于FLUX.1-dev模型的8步蒸馏版lora。我们使用特殊设计的判别器来提高蒸馏质量。该模型可以用于T2I、Inpainting controlnet和其他FLUX相关模型。建议guidance_scale=3.5和lora_scale=1。我们的更低步数的版本将在后续发布。 |
|
|
|
- Text-to-Image. |
|
|
|
![](./images/T2I.png) |
|
|
|
- 配合[alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Beta](https://huggingface.co/alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Beta)。我们模型可以很好地适配Inpainting controlnet,并与原始输出保持相似的结果。 |
|
|
|
![](./images/inpaint.png) |
|
|
|
# 使用指南 |
|
## diffusers |
|
该模型可以直接与diffusers一起使用 |
|
|
|
```python |
|
import torch |
|
from diffusers.pipelines import FluxPipeline |
|
|
|
model_id = "black-forest-labs/FLUX.1-dev" |
|
adapter_id = "alimama-creative/FLUX.1-Turbo-Alpha" |
|
|
|
pipe = FluxPipeline.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.bfloat16 |
|
) |
|
pipe.to("cuda") |
|
|
|
pipe.load_lora_weights(adapter_id) |
|
pipe.fuse_lora() |
|
|
|
prompt = "A DSLR photo of a shiny VW van that has a cityscape painted on it. A smiling sloth stands on grass in front of the van and is wearing a leather jacket, a cowboy hat, a kilt and a bowtie. The sloth is holding a quarterstaff and a big book." |
|
image = pipe( |
|
prompt=prompt, |
|
guidance_scale=3.5, |
|
height=1024, |
|
width=1024, |
|
num_inference_steps=8, |
|
max_sequence_length=512).images[0] |
|
``` |
|
|
|
## comfyui |
|
|
|
- 文生图加速链路: [点击这里](./workflows/t2I_flux_turbo.json) |
|
- Inpainting controlnet 加速链路: [点击这里](./workflows/alimama_flux_inpainting_turbo_8step.json) |
|
|
|
|
|
# 训练细节 |
|
|
|
该模型在1M公开数据集和内部源图片上进行训练,这些数据美学评分6.3+而且分辨率大于800。我们使用对抗训练来提高质量,我们的方法将原始FLUX.1-dev transformer固定为判别器的特征提取器,并在每个transformer层中添加判别头网络。在训练期间,我们将guidance scale固定为3.5,并使用时间偏移量3。 |
|
|
|
混合精度: bf16 |
|
|
|
学习率: 2e-5 |
|
|
|
批大小: 64 |
|
|
|
训练分辨率: 1024x1024 |