alejogil35's picture
End of training
f8196de
metadata
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
  - generated_from_trainer
datasets:
  - acordes_completo
metrics:
  - accuracy
model-index:
  - name: distilhubert-finetuned-chorddetection
    results: []

distilhubert-finetuned-chorddetection

This model is a fine-tuned version of ntu-spml/distilhubert on the ChordStimation dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0000
  • Accuracy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.0 1.0 3025 0.0000 1.0
0.0 2.0 6050 0.0000 1.0
0.0 3.0 9075 0.0000 1.0
0.0 4.0 12100 0.0000 1.0
0.0 5.0 15125 0.0000 1.0
0.0 6.0 18150 0.0000 1.0
0.0 7.0 21175 0.0000 1.0
0.0 8.0 24200 0.0000 1.0
0.0 9.0 27225 0.0000 1.0
0.0 10.0 30250 0.0000 1.0

Framework versions

  • Transformers 4.35.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1