NEOX / tests /model /test_model_instantiation.py
akswelh's picture
Upload 251 files
d90b3a8 verified
# Copyright (c) 2024, EleutherAI
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
instantiate models with different configurations as a first possible point of failure
"""
import pytest
import torch
import os
from tests.common import (
DistributedTest,
model_setup,
clear_test_dirs,
parametrize,
binary,
)
PARAMS_TO_TEST = {
"pipe_parallel_size,model_parallel_size,world_size": [
[0, 1, 1],
[1, 2, 2],
[0, 2, 2],
],
"no_weight_tying": binary,
"attention_config": [
[[["global"], "all"]],
[[["local"], "all"]],
[[["sparse_variable"], "all"]],
[[["sparse_fixed"], "all"]],
],
"scaled_upper_triang_masked_softmax_fusion,bias_gelu_fusion": [
[True, False],
[False, True],
],
"fp16,fp32_allreduce": [
[
{
"enabled": True,
"type": "bfloat16",
"loss_scale": 0,
"loss_scale_window": 1000,
"hysteresis": 2,
"min_loss_scale": 1,
},
True,
],
[
{
"enabled": True,
"loss_scale": 0,
"loss_scale_window": 1000,
"hysteresis": 2,
"min_loss_scale": 1,
},
False,
],
],
}
parameters, names = parametrize(
PARAMS_TO_TEST, max_tests=int(os.getenv("MAX_TESTCASES", 50)), seed=None
)
@pytest.mark.xfail(
reason="Either fused kernels are not installed, or Cannot re-initialize CUDA in forked subprocess'"
)
@pytest.mark.parametrize("param_dict", parameters, ids=names)
def test_instantiate(param_dict):
t1 = test_instantiate_optimizers_class()
t1.run_test_model_instantiation(param_dict)
OPTIMIZER_PARAMS = {
"optimizer": [
{"type": "adam", "params": {"lr": 0.0006}},
{"type": "onebitadam", "params": {"lr": 0.0006}},
{"type": "cpu_adam", "params": {"lr": 0.0006}},
{"type": "cpu_torch_adam", "params": {"lr": 0.0006}},
{"type": "sm3", "params": {"lr": 0.0006}},
{"type": "lion", "params": {"lr": 0.0006}},
{"type": "madgrad_wd", "params": {"lr": 0.0006}},
]
}
opt_params, opt_name = parametrize(
OPTIMIZER_PARAMS, max_tests=int(os.getenv("MAX_TESTCASES", 50)), seed=None
)
@pytest.mark.xfail(
reason="Either fused kernels are not installed, or 'Cannot re-initialize CUDA in forked subprocess'"
)
@pytest.mark.parametrize("param_dict", opt_params, ids=opt_name)
def test_instantiate_optimizers(param_dict):
t1 = test_instantiate_optimizers_class()
t1.run_test_model_instantiation(param_dict)
class test_instantiate_optimizers_class(DistributedTest):
world_size = 2
def run_test_model_instantiation(yaml_list=None, param_dict=None):
from deepspeed.runtime.pipe.engine import PipelineEngine, DeepSpeedEngine
model, optimizer, lr_scheduler, args_loaded = model_setup(yaml_list, param_dict)
if args_loaded.pipe_parallel_size < 2:
assert isinstance(
model, DeepSpeedEngine
), "test model instantiation " + str(yaml_list)
else:
assert isinstance(model, PipelineEngine), "test model instantiation " + str(
yaml_list
)
if torch.distributed.get_world_size() == 1 or torch.distributed.get_rank() == 0:
clear_test_dirs()