File size: 3,945 Bytes
d90b3a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
# Copyright (c) 2024, EleutherAI
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
instantiate models with different configurations as a first possible point of failure
"""

import pytest

import torch
import os
from tests.common import (
    DistributedTest,
    model_setup,
    clear_test_dirs,
    parametrize,
    binary,
)

PARAMS_TO_TEST = {
    "pipe_parallel_size,model_parallel_size,world_size": [
        [0, 1, 1],
        [1, 2, 2],
        [0, 2, 2],
    ],
    "no_weight_tying": binary,
    "attention_config": [
        [[["global"], "all"]],
        [[["local"], "all"]],
        [[["sparse_variable"], "all"]],
        [[["sparse_fixed"], "all"]],
    ],
    "scaled_upper_triang_masked_softmax_fusion,bias_gelu_fusion": [
        [True, False],
        [False, True],
    ],
    "fp16,fp32_allreduce": [
        [
            {
                "enabled": True,
                "type": "bfloat16",
                "loss_scale": 0,
                "loss_scale_window": 1000,
                "hysteresis": 2,
                "min_loss_scale": 1,
            },
            True,
        ],
        [
            {
                "enabled": True,
                "loss_scale": 0,
                "loss_scale_window": 1000,
                "hysteresis": 2,
                "min_loss_scale": 1,
            },
            False,
        ],
    ],
}

parameters, names = parametrize(
    PARAMS_TO_TEST, max_tests=int(os.getenv("MAX_TESTCASES", 50)), seed=None
)


@pytest.mark.xfail(
    reason="Either fused kernels are not installed, or Cannot re-initialize CUDA in forked subprocess'"
)
@pytest.mark.parametrize("param_dict", parameters, ids=names)
def test_instantiate(param_dict):
    t1 = test_instantiate_optimizers_class()
    t1.run_test_model_instantiation(param_dict)


OPTIMIZER_PARAMS = {
    "optimizer": [
        {"type": "adam", "params": {"lr": 0.0006}},
        {"type": "onebitadam", "params": {"lr": 0.0006}},
        {"type": "cpu_adam", "params": {"lr": 0.0006}},
        {"type": "cpu_torch_adam", "params": {"lr": 0.0006}},
        {"type": "sm3", "params": {"lr": 0.0006}},
        {"type": "lion", "params": {"lr": 0.0006}},
        {"type": "madgrad_wd", "params": {"lr": 0.0006}},
    ]
}
opt_params, opt_name = parametrize(
    OPTIMIZER_PARAMS, max_tests=int(os.getenv("MAX_TESTCASES", 50)), seed=None
)


@pytest.mark.xfail(
    reason="Either fused kernels are not installed, or 'Cannot re-initialize CUDA in forked subprocess'"
)
@pytest.mark.parametrize("param_dict", opt_params, ids=opt_name)
def test_instantiate_optimizers(param_dict):
    t1 = test_instantiate_optimizers_class()
    t1.run_test_model_instantiation(param_dict)


class test_instantiate_optimizers_class(DistributedTest):
    world_size = 2

    def run_test_model_instantiation(yaml_list=None, param_dict=None):
        from deepspeed.runtime.pipe.engine import PipelineEngine, DeepSpeedEngine

        model, optimizer, lr_scheduler, args_loaded = model_setup(yaml_list, param_dict)
        if args_loaded.pipe_parallel_size < 2:
            assert isinstance(
                model, DeepSpeedEngine
            ), "test model instantiation " + str(yaml_list)
        else:
            assert isinstance(model, PipelineEngine), "test model instantiation " + str(
                yaml_list
            )
        if torch.distributed.get_world_size() == 1 or torch.distributed.get_rank() == 0:
            clear_test_dirs()