metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
base_model: distilbert-base-uncased
model-index:
- name: distilbert-base-uncased-finetuned-emotion
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: emotion
type: emotion
args: split
metrics:
- type: accuracy
value: 0.9365
name: Accuracy
- type: f1
value: 0.9364574852227833
name: F1
distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of distilbert-base-uncased on the emotion dataset. It achieves the following results on the evaluation set:
- Loss: 0.1581
- Accuracy: 0.9365
- F1: 0.9365
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.7694 | 1.0 | 250 | 0.2602 | 0.9195 | 0.9178 |
0.2098 | 2.0 | 500 | 0.1733 | 0.927 | 0.9271 |
0.1463 | 3.0 | 750 | 0.1581 | 0.9365 | 0.9365 |
Framework versions
- Transformers 4.13.0
- Pytorch 1.13.1+cu116
- Datasets 2.8.0
- Tokenizers 0.10.3