Edit model card

mixtral-4x7b-instruct-code

mixtral-4x7b-instruct-code is a MoE of the following models using mergekit:

🧩 Configuration

base_model: akameswa/mistral-7b-instruct-v0.2-bnb-16bit
gate_mode: hidden 
dtype: float16 
experts:
  - source_model: akameswa/mistral-7b-instruct-javascript-16bit
    positive_prompts: ["You are helpful a coding assistant good at javascript"]
  - source_model: akameswa/mistral-7b-instruct-java-16bit
    positive_prompts: ["You are helpful a coding assistant good at java"]
  - source_model: akameswa/mistral-7b-instruct-cpp-16bit
    positive_prompts: ["You are helpful a coding assistant good at cpp"]
  - source_model: akameswa/mistral-7b-instruct-python-16bit
    positive_prompts: ["You are helpful a coding assistant good at python"]

Inference

from transformers import AutoTokenizer
import transformers
import torch

model = "akameswa/mixtral-4x7b-instruct-code-trial"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
    model_kwargs={"load_in_4bit": True},
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
Downloads last month
7
Safetensors
Model size
24.2B params
Tensor type
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Collection including akameswa/mixtral-4x7b-instruct-code-old