aisuko's picture
ft-wav2vec2-with-minds
429faf1 verified
|
raw
history blame
2.36 kB
metadata
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
  - generated_from_trainer
datasets:
  - minds14
metrics:
  - accuracy
model-index:
  - name: ft-wav2vec2-with-minds
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: minds14
          type: minds14
          config: en-US
          split: train
          args: en-US
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.11504424778761062

ft-wav2vec2-with-minds

This model is a fine-tuned version of facebook/wav2vec2-base on the minds14 dataset. It achieves the following results on the evaluation set:

  • Loss: 2.6358
  • Accuracy: 0.1150

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 2 2.6358 0.1150
No log 2.0 4 2.6403 0.1062
No log 3.0 6 2.6474 0.0796
No log 4.0 8 2.6491 0.0442
2.6359 5.0 10 2.6499 0.0531
2.6359 6.0 12 2.6521 0.0531
2.6359 7.0 14 2.6526 0.0442
2.6359 8.0 16 2.6522 0.0354
2.6359 9.0 18 2.6520 0.0354
2.625 10.0 20 2.6521 0.0442

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.0.0
  • Datasets 2.15.0
  • Tokenizers 0.15.0