|
# BERT large model multitask (cased) for Sentence Embeddings in Russian language. |
|
For better quality, use mean token embeddings. |
|
## Usage (HuggingFace Models Repository) |
|
You can use the model directly from the model repository to compute sentence embeddings: |
|
```python |
|
from transformers import AutoTokenizer, AutoModel |
|
import torch |
|
#Mean Pooling - Take attention mask into account for correct averaging |
|
def mean_pooling(model_output, attention_mask): |
|
token_embeddings = model_output[0] #First element of model_output contains all token embeddings |
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() |
|
sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) |
|
sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9) |
|
return sum_embeddings / sum_mask |
|
#Sentences we want sentence embeddings for |
|
sentences = ['Привет! Как твои дела?', |
|
'А правда, что 42 твое любимое число?'] |
|
#Load AutoModel from huggingface model repository |
|
tokenizer = AutoTokenizer.from_pretrained("sberbank-ai/sbert_large_nlu_ru") |
|
model = AutoModel.from_pretrained("sberbank-ai/sbert_large_nlu_ru") |
|
#Tokenize sentences |
|
encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=24, return_tensors='pt') |
|
#Compute token embeddings |
|
with torch.no_grad(): |
|
model_output = model(**encoded_input) |
|
#Perform pooling. In this case, mean pooling |
|
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) |
|
``` |