Edit model card

BEE-spoke-data/verysmol_llama-v11-KIx2-GGUF

Quantized GGUF model files for verysmol_llama-v11-KIx2 from BEE-spoke-data

Original Model Card:

verysmol_llama-v11-KIx2

Model description

This model is a fine-tuned version of v10 (refinedweb-3m dedup) further trained for 2 epochs on KI dataset.

It achieves the following results on the evaluation set:

  • Loss: 2.8876
  • Accuracy: 0.4502

evals

hf-causal-experimental (pretrained=pszemraj/verysmol_llama-v11-KIx2,revision=main,trust_remote_code=True,dtype='float'), limit: None, provide_description: False, num_fewshot: 0, batch_size: 16

Task Version Metric Value Stderr
arc_easy 0 acc 0.4024 ± 0.0101
acc_norm 0.3788 ± 0.0100
boolq 1 acc 0.6199 ± 0.0085
lambada_openai 0 ppl 111.9939 ± 4.6906
acc 0.2354 ± 0.0059
openbookqa 0 acc 0.1440 ± 0.0157
acc_norm 0.2760 ± 0.0200
piqa 0 acc 0.5713 ± 0.0115
acc_norm 0.5664 ± 0.0116
winogrande 0 acc 0.5201 ± 0.0140
Task Version Metric Value Stderr
arc_challenge 0 acc 0.1971 ± 0.0116
acc_norm 0.2278 ± 0.0123
Task Version Metric Value Stderr
hellaswag 0 acc 0.2618 ± 0.0088
acc_norm 0.2797 ± 0.0090
Task Version Metric Value Stderr
truthfulqa_mc 1 mc1 0.2509 ± 0.0152
mc2 0.4492 ± 0.0156

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00014
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 17514
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-06
  • lr_scheduler_type: inverse_sqrt
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 2.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.0681 0.03 150 3.0689 0.4259
3.0113 0.07 300 3.0433 0.4278
2.9468 0.1 450 3.0362 0.4288
3.0162 0.13 600 3.0148 0.4326
2.9531 0.17 750 3.0012 0.4341
2.9282 0.2 900 2.9923 0.4358
2.9485 0.23 1050 2.9845 0.4357
2.9365 0.27 1200 2.9749 0.4375

...

Training Loss Epoch Step Validation Loss Accuracy
2.8215 1.7 7650 2.8943 0.4496
2.7714 1.74 7800 2.8914 0.4501
2.8132 1.77 7950 2.8913 0.4500
2.8505 1.8 8100 2.8906 0.4502
2.8294 1.84 8250 2.8901 0.4502
2.7977 1.87 8400 2.8891 0.4499
2.7501 1.9 8550 2.8878 0.4505
2.8038 1.94 8700 2.8883 0.4504
2.7547 1.97 8850 2.8876 0.4502

Downloads last month
40
GGUF
Model size
58.1M params
Architecture
llama

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for afrideva/verysmol_llama-v11-KIx2-GGUF

Quantized
(2)
this model