Edit model card

080524_epoch_13

This model is a fine-tuned version of projecte-aina/roberta-base-ca-v2-cased-te on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8371
  • Accuracy: 0.8151
  • Precision: 0.8509
  • Recall: 0.8151
  • F1: 0.8103
  • Ratio: 0.6597

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 10
  • eval_batch_size: 2
  • seed: 47
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 20
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • lr_scheduler_warmup_steps: 4
  • num_epochs: 1
  • label_smoothing_factor: 0.1

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Ratio
0.3002 0.1176 10 0.8662 0.8151 0.8509 0.8151 0.8103 0.6597
0.3026 0.2353 20 0.7930 0.8277 0.8516 0.8277 0.8248 0.6303
0.2933 0.3529 30 0.7946 0.8277 0.8484 0.8277 0.8251 0.6218
0.2921 0.4706 40 0.8687 0.8151 0.8509 0.8151 0.8103 0.6597
0.2947 0.5882 50 0.8540 0.8109 0.8442 0.8109 0.8062 0.6555
0.3148 0.7059 60 0.8454 0.8151 0.8469 0.8151 0.8108 0.6513
0.3221 0.8235 70 0.8642 0.8151 0.8509 0.8151 0.8103 0.6597
0.316 0.9412 80 0.8389 0.8151 0.8509 0.8151 0.8103 0.6597

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
10
Safetensors
Model size
125M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for adriansanz/150524_15ep

Finetuned
(30)
this model