Edit model card

sembr2023-bert-mini

This model is a fine-tuned version of prajjwal1/bert-mini on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1844
  • Precision: 0.7925
  • Recall: 0.7950
  • F1: 0.7938
  • Iou: 0.6581
  • Accuracy: 0.9620
  • Balanced Accuracy: 0.8870
  • Overall Accuracy: 0.9443

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Iou Accuracy Balanced Accuracy Overall Accuracy
0.5028 0.06 10 0.5036 0 0.0 0.0 0.0 0.9080 0.5 0.9080
0.417 0.12 20 0.4416 0 0.0 0.0 0.0 0.9080 0.5 0.9080
0.4292 0.18 30 0.4298 0 0.0 0.0 0.0 0.9080 0.5 0.9080
0.3964 0.24 40 0.4121 0 0.0 0.0 0.0 0.9080 0.5 0.9080
0.3611 0.3 50 0.3619 0.5833 0.0080 0.0158 0.0080 0.9082 0.5037 0.9081
0.3201 0.36 60 0.3103 0.6414 0.5085 0.5673 0.3960 0.9287 0.7399 0.9146
0.2983 0.42 70 0.2575 0.7866 0.6423 0.7072 0.5470 0.9511 0.8123 0.9333
0.2621 0.48 80 0.2402 0.7879 0.6824 0.7314 0.5765 0.9539 0.8319 0.9354
0.2464 0.55 90 0.2262 0.8304 0.6660 0.7391 0.5862 0.9568 0.8261 0.9384
0.21 0.61 100 0.2186 0.7990 0.7131 0.7536 0.6047 0.9571 0.8475 0.9382
0.2238 0.67 110 0.2042 0.8242 0.6860 0.7487 0.5984 0.9577 0.8356 0.9408
0.1849 0.73 120 0.1990 0.8799 0.6422 0.7425 0.5904 0.9590 0.8166 0.9432
0.1702 0.79 130 0.1959 0.7862 0.7436 0.7643 0.6185 0.9578 0.8615 0.9392
0.2033 0.85 140 0.1939 0.7996 0.7414 0.7694 0.6252 0.9591 0.8613 0.9404
0.1686 0.91 150 0.1916 0.7982 0.7437 0.7700 0.6260 0.9591 0.8623 0.9410
0.1484 0.97 160 0.1855 0.7898 0.7597 0.7745 0.6320 0.9593 0.8696 0.9408
0.1717 1.03 170 0.1864 0.8231 0.7301 0.7738 0.6310 0.9607 0.8571 0.9434
0.1584 1.09 180 0.1844 0.7919 0.7676 0.7796 0.6388 0.9601 0.8736 0.9414
0.1455 1.15 190 0.1807 0.8255 0.7496 0.7857 0.6470 0.9624 0.8668 0.9437
0.1521 1.21 200 0.1746 0.8277 0.7428 0.7829 0.6433 0.9621 0.8636 0.9450
0.1385 1.27 210 0.1833 0.8099 0.7573 0.7828 0.6431 0.9613 0.8697 0.9430
0.1246 1.33 220 0.1857 0.7400 0.8164 0.7763 0.6344 0.9567 0.8937 0.9366
0.1312 1.39 230 0.1738 0.8345 0.7441 0.7867 0.6484 0.9629 0.8646 0.9458
0.1139 1.45 240 0.1750 0.7964 0.7861 0.7912 0.6545 0.9618 0.8829 0.9428
0.1181 1.52 250 0.1728 0.8201 0.7578 0.7877 0.6498 0.9624 0.8705 0.9448
0.1248 1.58 260 0.1774 0.8148 0.7727 0.7932 0.6573 0.9629 0.8775 0.9441
0.1384 1.64 270 0.1748 0.7840 0.7925 0.7882 0.6505 0.9608 0.8852 0.9418
0.1068 1.7 280 0.1744 0.7943 0.7950 0.7947 0.6593 0.9622 0.8871 0.9430
0.114 1.76 290 0.1749 0.7916 0.7904 0.7910 0.6543 0.9616 0.8847 0.9428
0.1214 1.82 300 0.1778 0.7551 0.8233 0.7877 0.6498 0.9592 0.8981 0.9392
0.1139 1.88 310 0.1764 0.7897 0.7839 0.7868 0.6485 0.9609 0.8814 0.9425
0.1254 1.94 320 0.1771 0.7908 0.7925 0.7916 0.6551 0.9616 0.8856 0.9427
0.1001 2.0 330 0.1715 0.8057 0.7829 0.7942 0.6586 0.9627 0.8819 0.9445
0.0989 2.06 340 0.1705 0.8099 0.7803 0.7948 0.6595 0.9629 0.8809 0.9446
0.1222 2.12 350 0.1761 0.7843 0.7991 0.7916 0.6551 0.9613 0.8884 0.9422
0.1032 2.18 360 0.1754 0.7961 0.7864 0.7912 0.6545 0.9618 0.8830 0.9432
0.0799 2.24 370 0.1753 0.7867 0.7879 0.7873 0.6492 0.9608 0.8831 0.9432
0.099 2.3 380 0.1751 0.8101 0.7738 0.7915 0.6549 0.9625 0.8777 0.9451
0.0993 2.36 390 0.1699 0.8073 0.7791 0.7929 0.6569 0.9626 0.8801 0.9454
0.1025 2.42 400 0.1662 0.8203 0.7764 0.7978 0.6636 0.9638 0.8796 0.9465
0.1081 2.48 410 0.1762 0.8005 0.7893 0.7949 0.6596 0.9625 0.8847 0.9444
0.1118 2.55 420 0.1720 0.8130 0.7755 0.7938 0.6582 0.9630 0.8787 0.9458
0.0779 2.61 430 0.1712 0.8131 0.7797 0.7961 0.6612 0.9633 0.8808 0.9454
0.0944 2.67 440 0.1788 0.7754 0.8094 0.7921 0.6557 0.9609 0.8928 0.9419
0.1053 2.73 450 0.1696 0.7980 0.7901 0.7940 0.6584 0.9623 0.8849 0.9450
0.0889 2.79 460 0.1719 0.8215 0.7736 0.7968 0.6623 0.9637 0.8783 0.9465
0.0879 2.85 470 0.1712 0.8091 0.7828 0.7957 0.6608 0.9630 0.8820 0.9457
0.0867 2.91 480 0.1769 0.8021 0.78 0.7909 0.6541 0.9621 0.8803 0.9447
0.0787 2.97 490 0.1788 0.8044 0.7831 0.7936 0.6578 0.9625 0.8819 0.9447
0.0945 3.03 500 0.1736 0.8055 0.7820 0.7936 0.6578 0.9626 0.8815 0.9445
0.1011 3.09 510 0.1823 0.7881 0.7962 0.7921 0.6558 0.9616 0.8873 0.9432
0.0914 3.15 520 0.1819 0.7958 0.7939 0.7948 0.6595 0.9623 0.8866 0.9438
0.0837 3.21 530 0.1738 0.8129 0.7857 0.7991 0.6654 0.9637 0.8837 0.9460
0.0776 3.27 540 0.1828 0.7921 0.7961 0.7941 0.6585 0.9620 0.8874 0.9437
0.0916 3.33 550 0.1776 0.7835 0.7994 0.7913 0.6547 0.9612 0.8885 0.9433
0.081 3.39 560 0.1784 0.7784 0.8033 0.7907 0.6538 0.9609 0.8901 0.9428
0.0867 3.45 570 0.1793 0.7728 0.8074 0.7897 0.6525 0.9605 0.8917 0.9425
0.0816 3.52 580 0.1789 0.7829 0.8017 0.7922 0.6559 0.9613 0.8896 0.9433
0.0808 3.58 590 0.1791 0.7890 0.7941 0.7916 0.6550 0.9615 0.8863 0.9435
0.07 3.64 600 0.1844 0.7697 0.8071 0.7880 0.6501 0.9600 0.8913 0.9420
0.0775 3.7 610 0.1795 0.7849 0.7957 0.7902 0.6532 0.9612 0.8868 0.9433
0.0722 3.76 620 0.1772 0.7993 0.7814 0.7903 0.6532 0.9619 0.8808 0.9449
0.0786 3.82 630 0.1775 0.8159 0.7763 0.7956 0.6606 0.9633 0.8793 0.9457
0.0768 3.88 640 0.1823 0.8015 0.7848 0.7931 0.6571 0.9623 0.8826 0.9442
0.0728 3.94 650 0.1806 0.7918 0.7885 0.7901 0.6531 0.9615 0.8838 0.9438
0.0762 4.0 660 0.1831 0.7881 0.7935 0.7908 0.6540 0.9614 0.8859 0.9435
0.0776 4.06 670 0.1788 0.8015 0.7847 0.7930 0.6570 0.9623 0.8825 0.9453
0.0843 4.12 680 0.1824 0.8009 0.7876 0.7942 0.6587 0.9625 0.8839 0.9445
0.066 4.18 690 0.1843 0.7921 0.7918 0.7920 0.6556 0.9617 0.8854 0.9440
0.0832 4.24 700 0.1781 0.7957 0.7893 0.7925 0.6563 0.9620 0.8844 0.9447
0.0761 4.3 710 0.1871 0.7817 0.8017 0.7916 0.6550 0.9612 0.8895 0.9428
0.0696 4.36 720 0.1813 0.7957 0.7924 0.7940 0.6584 0.9622 0.8859 0.9446
0.0734 4.42 730 0.1827 0.7934 0.7938 0.7936 0.6578 0.9620 0.8864 0.9444
0.0823 4.48 740 0.1856 0.7956 0.7913 0.7935 0.6576 0.9621 0.8854 0.9443
0.0662 4.55 750 0.1790 0.7890 0.7952 0.7921 0.6557 0.9616 0.8868 0.9444
0.0775 4.61 760 0.1858 0.7899 0.7953 0.7926 0.6564 0.9617 0.8869 0.9439
0.0764 4.67 770 0.1853 0.7852 0.8011 0.7931 0.6572 0.9616 0.8895 0.9436
0.0689 4.73 780 0.1804 0.7964 0.7924 0.7944 0.6589 0.9623 0.8859 0.9445
0.0785 4.79 790 0.1817 0.7937 0.7921 0.7929 0.6569 0.9619 0.8856 0.9444
0.075 4.85 800 0.1856 0.7912 0.7929 0.7920 0.6556 0.9617 0.8858 0.9440
0.0691 4.91 810 0.1844 0.7805 0.8 0.7901 0.6531 0.9609 0.8886 0.9432
0.0835 4.97 820 0.1829 0.7984 0.7911 0.7947 0.6594 0.9624 0.8854 0.9448
0.0712 5.03 830 0.1820 0.7906 0.7927 0.7917 0.6552 0.9616 0.8857 0.9443
0.0594 5.09 840 0.1841 0.7902 0.7948 0.7925 0.6563 0.9617 0.8867 0.9441
0.0775 5.15 850 0.1834 0.7927 0.7936 0.7932 0.6572 0.9619 0.8863 0.9444
0.0755 5.21 860 0.1833 0.7924 0.7944 0.7934 0.6575 0.9619 0.8867 0.9444
0.0717 5.27 870 0.1838 0.7902 0.7958 0.7930 0.6570 0.9618 0.8872 0.9443
0.0694 5.33 880 0.1834 0.7918 0.7939 0.7928 0.6568 0.9618 0.8864 0.9444
0.0759 5.39 890 0.1826 0.7905 0.7954 0.7929 0.6569 0.9618 0.8870 0.9443
0.0666 5.45 900 0.1821 0.7945 0.7922 0.7933 0.6575 0.9620 0.8857 0.9446
0.08 5.52 910 0.1829 0.7924 0.7953 0.7938 0.6581 0.9620 0.8871 0.9444
0.0816 5.58 920 0.1837 0.7918 0.7954 0.7936 0.6578 0.9619 0.8871 0.9443
0.0762 5.64 930 0.1837 0.7922 0.7954 0.7938 0.6581 0.9620 0.8871 0.9443
0.0655 5.7 940 0.1843 0.7906 0.7962 0.7934 0.6575 0.9619 0.8874 0.9442
0.0737 5.76 950 0.1846 0.7904 0.7964 0.7934 0.6576 0.9619 0.8875 0.9441
0.0717 5.82 960 0.1846 0.7905 0.7961 0.7933 0.6574 0.9618 0.8873 0.9441
0.0829 5.88 970 0.1845 0.7917 0.7954 0.7935 0.6577 0.9619 0.8871 0.9443
0.0766 5.94 980 0.1844 0.7924 0.7952 0.7938 0.6581 0.9620 0.8870 0.9443
0.0704 6.0 990 0.1844 0.7925 0.7950 0.7938 0.6581 0.9620 0.8870 0.9443
0.0755 6.06 1000 0.1844 0.7925 0.7950 0.7938 0.6581 0.9620 0.8870 0.9443

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.0.1
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
9
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for admko/sembr2023-bert-mini

Finetuned
(6)
this model

Collection including admko/sembr2023-bert-mini