adbcode's picture
Update README.md
e1ab825
---
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.87
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilhubert-finetuned-gtzan
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4340
- Accuracy: 0.87
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.2237 | 1.0 | 113 | 2.1326 | 0.39 |
| 1.6826 | 2.0 | 226 | 1.6199 | 0.55 |
| 1.337 | 3.0 | 339 | 1.2402 | 0.68 |
| 1.1666 | 4.0 | 452 | 1.0541 | 0.74 |
| 0.9228 | 5.0 | 565 | 0.8920 | 0.79 |
| 0.6978 | 6.0 | 678 | 0.7836 | 0.8 |
| 0.7301 | 7.0 | 791 | 0.6265 | 0.84 |
| 0.3828 | 8.0 | 904 | 0.5773 | 0.83 |
| 0.4556 | 9.0 | 1017 | 0.5133 | 0.84 |
| 0.293 | 10.0 | 1130 | 0.4869 | 0.87 |
| 0.1572 | 11.0 | 1243 | 0.4663 | 0.86 |
| 0.1201 | 12.0 | 1356 | 0.5136 | 0.82 |
| 0.1012 | 13.0 | 1469 | 0.4456 | 0.86 |
| 0.0958 | 14.0 | 1582 | 0.4376 | 0.87 |
| 0.0809 | 15.0 | 1695 | 0.4340 | 0.86 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3