Dataset credits go to: theblackcat102
How to run inference:
import transformers
import torch
def fmt_prompt(prompt: str) -> str:
return f"""[Instructions]:\n{prompt}\n\n[Response]:"""
if __name__ == "__main__":
model_name = "abacaj/starcoderbase-1b-sft"
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
model = (
transformers.AutoModelForCausalLM.from_pretrained(
model_name,
)
.to("cuda:0")
.eval()
)
prompt = "Write a python function to sort the following array in ascending order, don't use any built in sorting methods: [9,2,8,1,5]"
prompt_input = fmt_prompt(prompt)
inputs = tokenizer(prompt_input, return_tensors="pt").to(model.device)
input_ids_cutoff = inputs.input_ids.size(dim=1)
with torch.no_grad():
generated_ids = model.generate(
**inputs,
use_cache=True,
max_new_tokens=512,
temperature=0.2,
top_p=0.95,
do_sample=True,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
)
completion = tokenizer.decode(
generated_ids[0][input_ids_cutoff:],
skip_special_tokens=True,
)
print(completion)
Link to charts: https://api.wandb.ai/links/abacaj1/c4nkcs9r
Code to train model: https://github.com/abacaj/train-with-fsdp
- Downloads last month
- 30
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for abacaj/starcoderbase-1b-sft
Dataset used to train abacaj/starcoderbase-1b-sft
Spaces using abacaj/starcoderbase-1b-sft 3
Evaluation results
- pass@1 on HumanEvalself-reported39.000
- pass@1 on MBPPself-reported31.740