metadata
language:
- ru
license: apache-2.0
base_model: openai/whisper-base
tags:
- generated_from_trainer
datasets:
- aangry-mouse/stepik_ml_ru_2
metrics:
- wer
model-index:
- name: Whisper Base Ml Ru
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: ML датасет
type: aangry-mouse/stepik_ml_ru_2
args: 'config: ru, split: test'
metrics:
- name: Wer
type: wer
value: 33.821550154382074
Whisper Base Ml Ru
This model is a fine-tuned version of openai/whisper-base on the ML датасет dataset. It achieves the following results on the evaluation set:
- Loss: 0.4592
- Wer: 33.8216
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 1000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.6497 | 0.6649 | 250 | 0.6474 | 40.6539 |
0.4388 | 1.3298 | 500 | 0.5218 | 37.7009 |
0.4485 | 1.9947 | 750 | 0.4651 | 37.5030 |
0.296 | 2.6596 | 1000 | 0.4592 | 33.8216 |
Framework versions
- Transformers 4.41.0
- Pytorch 2.0.1+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1