|
--- |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: msi-nat-mini |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: validation |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.6308708414872799 |
|
- name: F1 |
|
type: f1 |
|
value: 0.47632740072381147 |
|
- name: Precision |
|
type: precision |
|
value: 0.6193914388860238 |
|
- name: Recall |
|
type: recall |
|
value: 0.3869512686266613 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# msi-nat-mini |
|
|
|
This model was trained from scratch on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8600 |
|
- Accuracy: 0.6309 |
|
- F1: 0.4763 |
|
- Precision: 0.6194 |
|
- Recall: 0.3870 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-06 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| 0.5496 | 1.0 | 2015 | 0.7573 | 0.5955 | 0.4196 | 0.5559 | 0.3369 | |
|
| 0.4807 | 2.0 | 4031 | 0.7416 | 0.6309 | 0.4981 | 0.6074 | 0.4222 | |
|
| 0.4235 | 3.0 | 6047 | 0.7680 | 0.6325 | 0.5047 | 0.6076 | 0.4317 | |
|
| 0.3879 | 4.0 | 8063 | 0.7875 | 0.6339 | 0.4923 | 0.6179 | 0.4092 | |
|
| 0.3702 | 5.0 | 10078 | 0.7923 | 0.6383 | 0.5128 | 0.6168 | 0.4388 | |
|
| 0.3568 | 6.0 | 12094 | 0.8311 | 0.6313 | 0.4969 | 0.6090 | 0.4197 | |
|
| 0.3661 | 7.0 | 14110 | 0.8345 | 0.6316 | 0.4843 | 0.6166 | 0.3987 | |
|
| 0.354 | 8.0 | 16126 | 0.8501 | 0.6305 | 0.4800 | 0.6162 | 0.3931 | |
|
| 0.3569 | 9.0 | 18141 | 0.8552 | 0.6318 | 0.4809 | 0.6193 | 0.3931 | |
|
| 0.3536 | 10.0 | 20150 | 0.8600 | 0.6309 | 0.4763 | 0.6194 | 0.3870 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|