|
from torch import nn as nn |
|
from torch.nn import functional as F |
|
|
|
from r_basicsr.utils.registry import ARCH_REGISTRY |
|
|
|
|
|
@ARCH_REGISTRY.register(suffix='basicsr') |
|
class SRVGGNetCompact(nn.Module): |
|
"""A compact VGG-style network structure for super-resolution. |
|
|
|
It is a compact network structure, which performs upsampling in the last layer and no convolution is |
|
conducted on the HR feature space. |
|
|
|
Args: |
|
num_in_ch (int): Channel number of inputs. Default: 3. |
|
num_out_ch (int): Channel number of outputs. Default: 3. |
|
num_feat (int): Channel number of intermediate features. Default: 64. |
|
num_conv (int): Number of convolution layers in the body network. Default: 16. |
|
upscale (int): Upsampling factor. Default: 4. |
|
act_type (str): Activation type, options: 'relu', 'prelu', 'leakyrelu'. Default: prelu. |
|
""" |
|
|
|
def __init__(self, num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu'): |
|
super(SRVGGNetCompact, self).__init__() |
|
self.num_in_ch = num_in_ch |
|
self.num_out_ch = num_out_ch |
|
self.num_feat = num_feat |
|
self.num_conv = num_conv |
|
self.upscale = upscale |
|
self.act_type = act_type |
|
|
|
self.body = nn.ModuleList() |
|
|
|
self.body.append(nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)) |
|
|
|
if act_type == 'relu': |
|
activation = nn.ReLU(inplace=True) |
|
elif act_type == 'prelu': |
|
activation = nn.PReLU(num_parameters=num_feat) |
|
elif act_type == 'leakyrelu': |
|
activation = nn.LeakyReLU(negative_slope=0.1, inplace=True) |
|
self.body.append(activation) |
|
|
|
|
|
for _ in range(num_conv): |
|
self.body.append(nn.Conv2d(num_feat, num_feat, 3, 1, 1)) |
|
|
|
if act_type == 'relu': |
|
activation = nn.ReLU(inplace=True) |
|
elif act_type == 'prelu': |
|
activation = nn.PReLU(num_parameters=num_feat) |
|
elif act_type == 'leakyrelu': |
|
activation = nn.LeakyReLU(negative_slope=0.1, inplace=True) |
|
self.body.append(activation) |
|
|
|
|
|
self.body.append(nn.Conv2d(num_feat, num_out_ch * upscale * upscale, 3, 1, 1)) |
|
|
|
self.upsampler = nn.PixelShuffle(upscale) |
|
|
|
def forward(self, x): |
|
out = x |
|
for i in range(0, len(self.body)): |
|
out = self.body[i](out) |
|
|
|
out = self.upsampler(out) |
|
|
|
base = F.interpolate(x, scale_factor=self.upscale, mode='nearest') |
|
out += base |
|
return out |
|
|