|
from torch import nn as nn |
|
from torch.nn import functional as F |
|
|
|
from r_basicsr.utils.registry import ARCH_REGISTRY |
|
from .arch_util import ResidualBlockNoBN, default_init_weights, make_layer |
|
|
|
|
|
@ARCH_REGISTRY.register() |
|
class MSRResNet(nn.Module): |
|
"""Modified SRResNet. |
|
|
|
A compacted version modified from SRResNet in |
|
"Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network" |
|
It uses residual blocks without BN, similar to EDSR. |
|
Currently, it supports x2, x3 and x4 upsampling scale factor. |
|
|
|
Args: |
|
num_in_ch (int): Channel number of inputs. Default: 3. |
|
num_out_ch (int): Channel number of outputs. Default: 3. |
|
num_feat (int): Channel number of intermediate features. Default: 64. |
|
num_block (int): Block number in the body network. Default: 16. |
|
upscale (int): Upsampling factor. Support x2, x3 and x4. Default: 4. |
|
""" |
|
|
|
def __init__(self, num_in_ch=3, num_out_ch=3, num_feat=64, num_block=16, upscale=4): |
|
super(MSRResNet, self).__init__() |
|
self.upscale = upscale |
|
|
|
self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1) |
|
self.body = make_layer(ResidualBlockNoBN, num_block, num_feat=num_feat) |
|
|
|
|
|
if self.upscale in [2, 3]: |
|
self.upconv1 = nn.Conv2d(num_feat, num_feat * self.upscale * self.upscale, 3, 1, 1) |
|
self.pixel_shuffle = nn.PixelShuffle(self.upscale) |
|
elif self.upscale == 4: |
|
self.upconv1 = nn.Conv2d(num_feat, num_feat * 4, 3, 1, 1) |
|
self.upconv2 = nn.Conv2d(num_feat, num_feat * 4, 3, 1, 1) |
|
self.pixel_shuffle = nn.PixelShuffle(2) |
|
|
|
self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1) |
|
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) |
|
|
|
|
|
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True) |
|
|
|
|
|
default_init_weights([self.conv_first, self.upconv1, self.conv_hr, self.conv_last], 0.1) |
|
if self.upscale == 4: |
|
default_init_weights(self.upconv2, 0.1) |
|
|
|
def forward(self, x): |
|
feat = self.lrelu(self.conv_first(x)) |
|
out = self.body(feat) |
|
|
|
if self.upscale == 4: |
|
out = self.lrelu(self.pixel_shuffle(self.upconv1(out))) |
|
out = self.lrelu(self.pixel_shuffle(self.upconv2(out))) |
|
elif self.upscale in [2, 3]: |
|
out = self.lrelu(self.pixel_shuffle(self.upconv1(out))) |
|
|
|
out = self.conv_last(self.lrelu(self.conv_hr(out))) |
|
base = F.interpolate(x, scale_factor=self.upscale, mode='bilinear', align_corners=False) |
|
out += base |
|
return out |
|
|