ZhangShenao's picture
Update README.md
2b940bc verified
|
raw
history blame
2.54 kB
---
license: mit
base_model: ZhangShenao/SELM-Llama-3-8B-Instruct-iter-1
tags:
- alignment-handbook
- dpo
- trl
- selm
datasets:
- HuggingFaceH4/ultrafeedback_binarized
model-index:
- name: SELM-Llama-3-8B-Instruct-iter-2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
Self-Exploring Language Models: Active Preference Elicitation for Online Alignment.
# SELM-Llama-3-8B-Instruct-iter-2
This model is a fine-tuned version of [ZhangShenao/SELM-Llama-3-8B-Instruct-iter-1](https://huggingface.co/ZhangShenao/SELM-Llama-3-8B-Instruct-iter-1) using synthetic data based on on the HuggingFaceH4/ultrafeedback_binarized dataset.
## Model description
- Model type: A 8B parameter Llama3-instruct-based Self-Exploring Language Models (SELM).
- License: MIT
## Results
|                                        | AlpacaEval 2.0 (LC WR) | MT-Bench (Average) |
|----------------------------------------|------------------------|--------------------|
| [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) |    &emsp; &emsp; &emsp;&emsp;         24.31         |  &emsp; &emsp; &emsp;         7.93       |
| [SELM-Llama-3-8B-Instruct-iter-1](https://huggingface.co/ZhangShenao/SELM-Llama-3-8B-Instruct-iter-1) |    &emsp; &emsp; &emsp;&emsp;         32.02         |  &emsp; &emsp; &emsp;         7.92       |
| [SELM-Llama-3-8B-Instruct-iter-2](https://huggingface.co/ZhangShenao/SELM-Llama-3-8B-Instruct-iter-2) |    &emsp; &emsp; &emsp;&emsp;         35.65         |  &emsp; &emsp; &emsp;         8.09      |
| [SELM-Llama-3-8B-Instruct-iter-3](https://huggingface.co/ZhangShenao/SELM-Llama-3-8B-Instruct-iter-3) |    &emsp; &emsp; &emsp;&emsp;         33.47          |  &emsp; &emsp; &emsp;         8.29       |
### Training hyperparameters
The following hyperparameters were used during training:
- alpha: 0.0001
- beta: 0.01
- train_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- num_epochs: 1
### Framework versions
- Transformers 4.40.2
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.19.1