|
|
|
|
|
import cupy |
|
import os |
|
import re |
|
import torch |
|
|
|
kernel_Correlation_rearrange = ''' |
|
extern "C" __global__ void kernel_Correlation_rearrange( |
|
const int n, |
|
const float* input, |
|
float* output |
|
) { |
|
int intIndex = (blockIdx.x * blockDim.x) + threadIdx.x; |
|
|
|
if (intIndex >= n) { |
|
return; |
|
} |
|
|
|
int intSample = blockIdx.z; |
|
int intChannel = blockIdx.y; |
|
|
|
float fltValue = input[(((intSample * SIZE_1(input)) + intChannel) * SIZE_2(input) * SIZE_3(input)) + intIndex]; |
|
|
|
__syncthreads(); |
|
|
|
int intPaddedY = (intIndex / SIZE_3(input)) + 4; |
|
int intPaddedX = (intIndex % SIZE_3(input)) + 4; |
|
int intRearrange = ((SIZE_3(input) + 8) * intPaddedY) + intPaddedX; |
|
|
|
output[(((intSample * SIZE_1(output) * SIZE_2(output)) + intRearrange) * SIZE_1(input)) + intChannel] = fltValue; |
|
} |
|
''' |
|
|
|
kernel_Correlation_updateOutput = ''' |
|
extern "C" __global__ void kernel_Correlation_updateOutput( |
|
const int n, |
|
const float* rbot0, |
|
const float* rbot1, |
|
float* top |
|
) { |
|
extern __shared__ char patch_data_char[]; |
|
|
|
float *patch_data = (float *)patch_data_char; |
|
|
|
// First (upper left) position of kernel upper-left corner in current center position of neighborhood in image 1 |
|
int x1 = blockIdx.x + 4; |
|
int y1 = blockIdx.y + 4; |
|
int item = blockIdx.z; |
|
int ch_off = threadIdx.x; |
|
|
|
// Load 3D patch into shared shared memory |
|
for (int j = 0; j < 1; j++) { // HEIGHT |
|
for (int i = 0; i < 1; i++) { // WIDTH |
|
int ji_off = (j + i) * SIZE_3(rbot0); |
|
for (int ch = ch_off; ch < SIZE_3(rbot0); ch += 32) { // CHANNELS |
|
int idx1 = ((item * SIZE_1(rbot0) + y1+j) * SIZE_2(rbot0) + x1+i) * SIZE_3(rbot0) + ch; |
|
int idxPatchData = ji_off + ch; |
|
patch_data[idxPatchData] = rbot0[idx1]; |
|
} |
|
} |
|
} |
|
|
|
__syncthreads(); |
|
|
|
__shared__ float sum[32]; |
|
|
|
// Compute correlation |
|
for (int top_channel = 0; top_channel < SIZE_1(top); top_channel++) { |
|
sum[ch_off] = 0; |
|
|
|
int s2o = top_channel % 9 - 4; |
|
int s2p = top_channel / 9 - 4; |
|
|
|
for (int j = 0; j < 1; j++) { // HEIGHT |
|
for (int i = 0; i < 1; i++) { // WIDTH |
|
int ji_off = (j + i) * SIZE_3(rbot0); |
|
for (int ch = ch_off; ch < SIZE_3(rbot0); ch += 32) { // CHANNELS |
|
int x2 = x1 + s2o; |
|
int y2 = y1 + s2p; |
|
|
|
int idxPatchData = ji_off + ch; |
|
int idx2 = ((item * SIZE_1(rbot0) + y2+j) * SIZE_2(rbot0) + x2+i) * SIZE_3(rbot0) + ch; |
|
|
|
sum[ch_off] += patch_data[idxPatchData] * rbot1[idx2]; |
|
} |
|
} |
|
} |
|
|
|
__syncthreads(); |
|
|
|
if (ch_off == 0) { |
|
float total_sum = 0; |
|
for (int idx = 0; idx < 32; idx++) { |
|
total_sum += sum[idx]; |
|
} |
|
const int sumelems = SIZE_3(rbot0); |
|
const int index = ((top_channel*SIZE_2(top) + blockIdx.y)*SIZE_3(top))+blockIdx.x; |
|
top[index + item*SIZE_1(top)*SIZE_2(top)*SIZE_3(top)] = total_sum / (float)sumelems; |
|
} |
|
} |
|
} |
|
''' |
|
|
|
kernel_Correlation_updateGradOne = ''' |
|
#define ROUND_OFF 50000 |
|
|
|
extern "C" __global__ void kernel_Correlation_updateGradOne( |
|
const int n, |
|
const int intSample, |
|
const float* rbot0, |
|
const float* rbot1, |
|
const float* gradOutput, |
|
float* gradOne, |
|
float* gradTwo |
|
) { for (int intIndex = (blockIdx.x * blockDim.x) + threadIdx.x; intIndex < n; intIndex += blockDim.x * gridDim.x) { |
|
int n = intIndex % SIZE_1(gradOne); // channels |
|
int l = (intIndex / SIZE_1(gradOne)) % SIZE_3(gradOne) + 4; // w-pos |
|
int m = (intIndex / SIZE_1(gradOne) / SIZE_3(gradOne)) % SIZE_2(gradOne) + 4; // h-pos |
|
|
|
// round_off is a trick to enable integer division with ceil, even for negative numbers |
|
// We use a large offset, for the inner part not to become negative. |
|
const int round_off = ROUND_OFF; |
|
const int round_off_s1 = round_off; |
|
|
|
// We add round_off before_s1 the int division and subtract round_off after it, to ensure the formula matches ceil behavior: |
|
int xmin = (l - 4 + round_off_s1 - 1) + 1 - round_off; // ceil (l - 4) |
|
int ymin = (m - 4 + round_off_s1 - 1) + 1 - round_off; // ceil (l - 4) |
|
|
|
// Same here: |
|
int xmax = (l - 4 + round_off_s1) - round_off; // floor (l - 4) |
|
int ymax = (m - 4 + round_off_s1) - round_off; // floor (m - 4) |
|
|
|
float sum = 0; |
|
if (xmax>=0 && ymax>=0 && (xmin<=SIZE_3(gradOutput)-1) && (ymin<=SIZE_2(gradOutput)-1)) { |
|
xmin = max(0,xmin); |
|
xmax = min(SIZE_3(gradOutput)-1,xmax); |
|
|
|
ymin = max(0,ymin); |
|
ymax = min(SIZE_2(gradOutput)-1,ymax); |
|
|
|
for (int p = -4; p <= 4; p++) { |
|
for (int o = -4; o <= 4; o++) { |
|
// Get rbot1 data: |
|
int s2o = o; |
|
int s2p = p; |
|
int idxbot1 = ((intSample * SIZE_1(rbot0) + (m+s2p)) * SIZE_2(rbot0) + (l+s2o)) * SIZE_3(rbot0) + n; |
|
float bot1tmp = rbot1[idxbot1]; // rbot1[l+s2o,m+s2p,n] |
|
|
|
// Index offset for gradOutput in following loops: |
|
int op = (p+4) * 9 + (o+4); // index[o,p] |
|
int idxopoffset = (intSample * SIZE_1(gradOutput) + op); |
|
|
|
for (int y = ymin; y <= ymax; y++) { |
|
for (int x = xmin; x <= xmax; x++) { |
|
int idxgradOutput = (idxopoffset * SIZE_2(gradOutput) + y) * SIZE_3(gradOutput) + x; // gradOutput[x,y,o,p] |
|
sum += gradOutput[idxgradOutput] * bot1tmp; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
const int sumelems = SIZE_1(gradOne); |
|
const int bot0index = ((n * SIZE_2(gradOne)) + (m-4)) * SIZE_3(gradOne) + (l-4); |
|
gradOne[bot0index + intSample*SIZE_1(gradOne)*SIZE_2(gradOne)*SIZE_3(gradOne)] = sum / (float)sumelems; |
|
} } |
|
''' |
|
|
|
kernel_Correlation_updateGradTwo = ''' |
|
#define ROUND_OFF 50000 |
|
|
|
extern "C" __global__ void kernel_Correlation_updateGradTwo( |
|
const int n, |
|
const int intSample, |
|
const float* rbot0, |
|
const float* rbot1, |
|
const float* gradOutput, |
|
float* gradOne, |
|
float* gradTwo |
|
) { for (int intIndex = (blockIdx.x * blockDim.x) + threadIdx.x; intIndex < n; intIndex += blockDim.x * gridDim.x) { |
|
int n = intIndex % SIZE_1(gradTwo); // channels |
|
int l = (intIndex / SIZE_1(gradTwo)) % SIZE_3(gradTwo) + 4; // w-pos |
|
int m = (intIndex / SIZE_1(gradTwo) / SIZE_3(gradTwo)) % SIZE_2(gradTwo) + 4; // h-pos |
|
|
|
// round_off is a trick to enable integer division with ceil, even for negative numbers |
|
// We use a large offset, for the inner part not to become negative. |
|
const int round_off = ROUND_OFF; |
|
const int round_off_s1 = round_off; |
|
|
|
float sum = 0; |
|
for (int p = -4; p <= 4; p++) { |
|
for (int o = -4; o <= 4; o++) { |
|
int s2o = o; |
|
int s2p = p; |
|
|
|
//Get X,Y ranges and clamp |
|
// We add round_off before_s1 the int division and subtract round_off after it, to ensure the formula matches ceil behavior: |
|
int xmin = (l - 4 - s2o + round_off_s1 - 1) + 1 - round_off; // ceil (l - 4 - s2o) |
|
int ymin = (m - 4 - s2p + round_off_s1 - 1) + 1 - round_off; // ceil (l - 4 - s2o) |
|
|
|
// Same here: |
|
int xmax = (l - 4 - s2o + round_off_s1) - round_off; // floor (l - 4 - s2o) |
|
int ymax = (m - 4 - s2p + round_off_s1) - round_off; // floor (m - 4 - s2p) |
|
|
|
if (xmax>=0 && ymax>=0 && (xmin<=SIZE_3(gradOutput)-1) && (ymin<=SIZE_2(gradOutput)-1)) { |
|
xmin = max(0,xmin); |
|
xmax = min(SIZE_3(gradOutput)-1,xmax); |
|
|
|
ymin = max(0,ymin); |
|
ymax = min(SIZE_2(gradOutput)-1,ymax); |
|
|
|
// Get rbot0 data: |
|
int idxbot0 = ((intSample * SIZE_1(rbot0) + (m-s2p)) * SIZE_2(rbot0) + (l-s2o)) * SIZE_3(rbot0) + n; |
|
float bot0tmp = rbot0[idxbot0]; // rbot1[l+s2o,m+s2p,n] |
|
|
|
// Index offset for gradOutput in following loops: |
|
int op = (p+4) * 9 + (o+4); // index[o,p] |
|
int idxopoffset = (intSample * SIZE_1(gradOutput) + op); |
|
|
|
for (int y = ymin; y <= ymax; y++) { |
|
for (int x = xmin; x <= xmax; x++) { |
|
int idxgradOutput = (idxopoffset * SIZE_2(gradOutput) + y) * SIZE_3(gradOutput) + x; // gradOutput[x,y,o,p] |
|
sum += gradOutput[idxgradOutput] * bot0tmp; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
const int sumelems = SIZE_1(gradTwo); |
|
const int bot1index = ((n * SIZE_2(gradTwo)) + (m-4)) * SIZE_3(gradTwo) + (l-4); |
|
gradTwo[bot1index + intSample*SIZE_1(gradTwo)*SIZE_2(gradTwo)*SIZE_3(gradTwo)] = sum / (float)sumelems; |
|
} } |
|
''' |
|
|
|
def cupy_kernel(strFunction, objVariables): |
|
strKernel = globals()[strFunction] |
|
|
|
while True: |
|
objMatch = re.search('(SIZE_)([0-4])(\()([^\)]*)(\))', strKernel) |
|
|
|
if objMatch is None: |
|
break |
|
|
|
|
|
intArg = int(objMatch.group(2)) |
|
|
|
strTensor = objMatch.group(4) |
|
intSizes = objVariables[strTensor].size() |
|
|
|
strKernel = strKernel.replace(objMatch.group(), str(intSizes[intArg] if torch.is_tensor(intSizes[intArg]) == False else intSizes[intArg].item())) |
|
|
|
while True: |
|
objMatch = re.search('(VALUE_)([0-4])(\()([^\)]+)(\))', strKernel) |
|
|
|
if objMatch is None: |
|
break |
|
|
|
|
|
intArgs = int(objMatch.group(2)) |
|
strArgs = objMatch.group(4).split(',') |
|
|
|
strTensor = strArgs[0] |
|
intStrides = objVariables[strTensor].stride() |
|
strIndex = [ '((' + strArgs[intArg + 1].replace('{', '(').replace('}', ')').strip() + ')*' + str(intStrides[intArg] if torch.is_tensor(intStrides[intArg]) == False else intStrides[intArg].item()) + ')' for intArg in range(intArgs) ] |
|
|
|
strKernel = strKernel.replace(objMatch.group(0), strTensor + '[' + str.join('+', strIndex) + ']') |
|
|
|
|
|
return strKernel |
|
|
|
|
|
@cupy.memoize(for_each_device=True) |
|
def cupy_launch(strFunction, strKernel): |
|
if 'CUDA_HOME' not in os.environ: |
|
os.environ['CUDA_HOME'] = cupy.cuda.get_cuda_path() |
|
|
|
|
|
return cupy.RawKernel(strKernel, strFunction, tuple(['-I ' + os.environ['CUDA_HOME'], '-I ' + os.environ['CUDA_HOME'] + '/include'])) |
|
|
|
|
|
class _FunctionCorrelation(torch.autograd.Function): |
|
@staticmethod |
|
def forward(self, one, two): |
|
rbot0 = one.new_zeros([ one.shape[0], one.shape[2] + 8, one.shape[3] + 8, one.shape[1] ]) |
|
rbot1 = one.new_zeros([ one.shape[0], one.shape[2] + 8, one.shape[3] + 8, one.shape[1] ]) |
|
|
|
one = one.contiguous(); assert(one.is_cuda == True) |
|
two = two.contiguous(); assert(two.is_cuda == True) |
|
|
|
output = one.new_zeros([ one.shape[0], 81, one.shape[2], one.shape[3] ]) |
|
|
|
if one.is_cuda == True: |
|
n = one.shape[2] * one.shape[3] |
|
cupy_launch('kernel_Correlation_rearrange', cupy_kernel('kernel_Correlation_rearrange', { |
|
'input': one, |
|
'output': rbot0 |
|
}))( |
|
grid=tuple([ int((n + 16 - 1) / 16), one.shape[1], one.shape[0] ]), |
|
block=tuple([ 16, 1, 1 ]), |
|
args=[ cupy.int32(n), one.data_ptr(), rbot0.data_ptr() ] |
|
) |
|
|
|
n = two.shape[2] * two.shape[3] |
|
cupy_launch('kernel_Correlation_rearrange', cupy_kernel('kernel_Correlation_rearrange', { |
|
'input': two, |
|
'output': rbot1 |
|
}))( |
|
grid=tuple([ int((n + 16 - 1) / 16), two.shape[1], two.shape[0] ]), |
|
block=tuple([ 16, 1, 1 ]), |
|
args=[ cupy.int32(n), two.data_ptr(), rbot1.data_ptr() ] |
|
) |
|
|
|
n = output.shape[1] * output.shape[2] * output.shape[3] |
|
cupy_launch('kernel_Correlation_updateOutput', cupy_kernel('kernel_Correlation_updateOutput', { |
|
'rbot0': rbot0, |
|
'rbot1': rbot1, |
|
'top': output |
|
}))( |
|
grid=tuple([ output.shape[3], output.shape[2], output.shape[0] ]), |
|
block=tuple([ 32, 1, 1 ]), |
|
shared_mem=one.shape[1] * 4, |
|
args=[ cupy.int32(n), rbot0.data_ptr(), rbot1.data_ptr(), output.data_ptr() ] |
|
) |
|
|
|
elif one.is_cuda == False: |
|
raise NotImplementedError() |
|
|
|
|
|
|
|
self.save_for_backward(one, two, rbot0, rbot1) |
|
|
|
return output |
|
|
|
|
|
@staticmethod |
|
def backward(self, gradOutput): |
|
one, two, rbot0, rbot1 = self.saved_tensors |
|
|
|
gradOutput = gradOutput.contiguous(); assert(gradOutput.is_cuda == True) |
|
|
|
gradOne = one.new_zeros([ one.shape[0], one.shape[1], one.shape[2], one.shape[3] ]) if self.needs_input_grad[0] == True else None |
|
gradTwo = one.new_zeros([ one.shape[0], one.shape[1], one.shape[2], one.shape[3] ]) if self.needs_input_grad[1] == True else None |
|
|
|
if one.is_cuda == True: |
|
if gradOne is not None: |
|
for intSample in range(one.shape[0]): |
|
n = one.shape[1] * one.shape[2] * one.shape[3] |
|
cupy_launch('kernel_Correlation_updateGradOne', cupy_kernel('kernel_Correlation_updateGradOne', { |
|
'rbot0': rbot0, |
|
'rbot1': rbot1, |
|
'gradOutput': gradOutput, |
|
'gradOne': gradOne, |
|
'gradTwo': None |
|
}))( |
|
grid=tuple([ int((n + 512 - 1) / 512), 1, 1 ]), |
|
block=tuple([ 512, 1, 1 ]), |
|
args=[ cupy.int32(n), intSample, rbot0.data_ptr(), rbot1.data_ptr(), gradOutput.data_ptr(), gradOne.data_ptr(), None ] |
|
) |
|
|
|
|
|
|
|
if gradTwo is not None: |
|
for intSample in range(one.shape[0]): |
|
n = one.shape[1] * one.shape[2] * one.shape[3] |
|
cupy_launch('kernel_Correlation_updateGradTwo', cupy_kernel('kernel_Correlation_updateGradTwo', { |
|
'rbot0': rbot0, |
|
'rbot1': rbot1, |
|
'gradOutput': gradOutput, |
|
'gradOne': None, |
|
'gradTwo': gradTwo |
|
}))( |
|
grid=tuple([ int((n + 512 - 1) / 512), 1, 1 ]), |
|
block=tuple([ 512, 1, 1 ]), |
|
args=[ cupy.int32(n), intSample, rbot0.data_ptr(), rbot1.data_ptr(), gradOutput.data_ptr(), None, gradTwo.data_ptr() ] |
|
) |
|
|
|
|
|
|
|
elif one.is_cuda == False: |
|
raise NotImplementedError() |
|
|
|
|
|
|
|
return gradOne, gradTwo |
|
|
|
|
|
|
|
def FunctionCorrelation(tenOne, tenTwo): |
|
return _FunctionCorrelation.apply(tenOne, tenTwo) |
|
|
|
|
|
class ModuleCorrelation(torch.nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
|
|
|
|
def forward(self, tenOne, tenTwo): |
|
return _FunctionCorrelation.apply(tenOne, tenTwo) |
|
|
|
|
|
|