File size: 15,418 Bytes
d90ba79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 |
#!/usr/bin/env python
import cupy
import os
import re
import torch
kernel_Correlation_rearrange = '''
extern "C" __global__ void kernel_Correlation_rearrange(
const int n,
const float* input,
float* output
) {
int intIndex = (blockIdx.x * blockDim.x) + threadIdx.x;
if (intIndex >= n) {
return;
}
int intSample = blockIdx.z;
int intChannel = blockIdx.y;
float fltValue = input[(((intSample * SIZE_1(input)) + intChannel) * SIZE_2(input) * SIZE_3(input)) + intIndex];
__syncthreads();
int intPaddedY = (intIndex / SIZE_3(input)) + 4;
int intPaddedX = (intIndex % SIZE_3(input)) + 4;
int intRearrange = ((SIZE_3(input) + 8) * intPaddedY) + intPaddedX;
output[(((intSample * SIZE_1(output) * SIZE_2(output)) + intRearrange) * SIZE_1(input)) + intChannel] = fltValue;
}
'''
kernel_Correlation_updateOutput = '''
extern "C" __global__ void kernel_Correlation_updateOutput(
const int n,
const float* rbot0,
const float* rbot1,
float* top
) {
extern __shared__ char patch_data_char[];
float *patch_data = (float *)patch_data_char;
// First (upper left) position of kernel upper-left corner in current center position of neighborhood in image 1
int x1 = blockIdx.x + 4;
int y1 = blockIdx.y + 4;
int item = blockIdx.z;
int ch_off = threadIdx.x;
// Load 3D patch into shared shared memory
for (int j = 0; j < 1; j++) { // HEIGHT
for (int i = 0; i < 1; i++) { // WIDTH
int ji_off = (j + i) * SIZE_3(rbot0);
for (int ch = ch_off; ch < SIZE_3(rbot0); ch += 32) { // CHANNELS
int idx1 = ((item * SIZE_1(rbot0) + y1+j) * SIZE_2(rbot0) + x1+i) * SIZE_3(rbot0) + ch;
int idxPatchData = ji_off + ch;
patch_data[idxPatchData] = rbot0[idx1];
}
}
}
__syncthreads();
__shared__ float sum[32];
// Compute correlation
for (int top_channel = 0; top_channel < SIZE_1(top); top_channel++) {
sum[ch_off] = 0;
int s2o = top_channel % 9 - 4;
int s2p = top_channel / 9 - 4;
for (int j = 0; j < 1; j++) { // HEIGHT
for (int i = 0; i < 1; i++) { // WIDTH
int ji_off = (j + i) * SIZE_3(rbot0);
for (int ch = ch_off; ch < SIZE_3(rbot0); ch += 32) { // CHANNELS
int x2 = x1 + s2o;
int y2 = y1 + s2p;
int idxPatchData = ji_off + ch;
int idx2 = ((item * SIZE_1(rbot0) + y2+j) * SIZE_2(rbot0) + x2+i) * SIZE_3(rbot0) + ch;
sum[ch_off] += patch_data[idxPatchData] * rbot1[idx2];
}
}
}
__syncthreads();
if (ch_off == 0) {
float total_sum = 0;
for (int idx = 0; idx < 32; idx++) {
total_sum += sum[idx];
}
const int sumelems = SIZE_3(rbot0);
const int index = ((top_channel*SIZE_2(top) + blockIdx.y)*SIZE_3(top))+blockIdx.x;
top[index + item*SIZE_1(top)*SIZE_2(top)*SIZE_3(top)] = total_sum / (float)sumelems;
}
}
}
'''
kernel_Correlation_updateGradOne = '''
#define ROUND_OFF 50000
extern "C" __global__ void kernel_Correlation_updateGradOne(
const int n,
const int intSample,
const float* rbot0,
const float* rbot1,
const float* gradOutput,
float* gradOne,
float* gradTwo
) { for (int intIndex = (blockIdx.x * blockDim.x) + threadIdx.x; intIndex < n; intIndex += blockDim.x * gridDim.x) {
int n = intIndex % SIZE_1(gradOne); // channels
int l = (intIndex / SIZE_1(gradOne)) % SIZE_3(gradOne) + 4; // w-pos
int m = (intIndex / SIZE_1(gradOne) / SIZE_3(gradOne)) % SIZE_2(gradOne) + 4; // h-pos
// round_off is a trick to enable integer division with ceil, even for negative numbers
// We use a large offset, for the inner part not to become negative.
const int round_off = ROUND_OFF;
const int round_off_s1 = round_off;
// We add round_off before_s1 the int division and subtract round_off after it, to ensure the formula matches ceil behavior:
int xmin = (l - 4 + round_off_s1 - 1) + 1 - round_off; // ceil (l - 4)
int ymin = (m - 4 + round_off_s1 - 1) + 1 - round_off; // ceil (l - 4)
// Same here:
int xmax = (l - 4 + round_off_s1) - round_off; // floor (l - 4)
int ymax = (m - 4 + round_off_s1) - round_off; // floor (m - 4)
float sum = 0;
if (xmax>=0 && ymax>=0 && (xmin<=SIZE_3(gradOutput)-1) && (ymin<=SIZE_2(gradOutput)-1)) {
xmin = max(0,xmin);
xmax = min(SIZE_3(gradOutput)-1,xmax);
ymin = max(0,ymin);
ymax = min(SIZE_2(gradOutput)-1,ymax);
for (int p = -4; p <= 4; p++) {
for (int o = -4; o <= 4; o++) {
// Get rbot1 data:
int s2o = o;
int s2p = p;
int idxbot1 = ((intSample * SIZE_1(rbot0) + (m+s2p)) * SIZE_2(rbot0) + (l+s2o)) * SIZE_3(rbot0) + n;
float bot1tmp = rbot1[idxbot1]; // rbot1[l+s2o,m+s2p,n]
// Index offset for gradOutput in following loops:
int op = (p+4) * 9 + (o+4); // index[o,p]
int idxopoffset = (intSample * SIZE_1(gradOutput) + op);
for (int y = ymin; y <= ymax; y++) {
for (int x = xmin; x <= xmax; x++) {
int idxgradOutput = (idxopoffset * SIZE_2(gradOutput) + y) * SIZE_3(gradOutput) + x; // gradOutput[x,y,o,p]
sum += gradOutput[idxgradOutput] * bot1tmp;
}
}
}
}
}
const int sumelems = SIZE_1(gradOne);
const int bot0index = ((n * SIZE_2(gradOne)) + (m-4)) * SIZE_3(gradOne) + (l-4);
gradOne[bot0index + intSample*SIZE_1(gradOne)*SIZE_2(gradOne)*SIZE_3(gradOne)] = sum / (float)sumelems;
} }
'''
kernel_Correlation_updateGradTwo = '''
#define ROUND_OFF 50000
extern "C" __global__ void kernel_Correlation_updateGradTwo(
const int n,
const int intSample,
const float* rbot0,
const float* rbot1,
const float* gradOutput,
float* gradOne,
float* gradTwo
) { for (int intIndex = (blockIdx.x * blockDim.x) + threadIdx.x; intIndex < n; intIndex += blockDim.x * gridDim.x) {
int n = intIndex % SIZE_1(gradTwo); // channels
int l = (intIndex / SIZE_1(gradTwo)) % SIZE_3(gradTwo) + 4; // w-pos
int m = (intIndex / SIZE_1(gradTwo) / SIZE_3(gradTwo)) % SIZE_2(gradTwo) + 4; // h-pos
// round_off is a trick to enable integer division with ceil, even for negative numbers
// We use a large offset, for the inner part not to become negative.
const int round_off = ROUND_OFF;
const int round_off_s1 = round_off;
float sum = 0;
for (int p = -4; p <= 4; p++) {
for (int o = -4; o <= 4; o++) {
int s2o = o;
int s2p = p;
//Get X,Y ranges and clamp
// We add round_off before_s1 the int division and subtract round_off after it, to ensure the formula matches ceil behavior:
int xmin = (l - 4 - s2o + round_off_s1 - 1) + 1 - round_off; // ceil (l - 4 - s2o)
int ymin = (m - 4 - s2p + round_off_s1 - 1) + 1 - round_off; // ceil (l - 4 - s2o)
// Same here:
int xmax = (l - 4 - s2o + round_off_s1) - round_off; // floor (l - 4 - s2o)
int ymax = (m - 4 - s2p + round_off_s1) - round_off; // floor (m - 4 - s2p)
if (xmax>=0 && ymax>=0 && (xmin<=SIZE_3(gradOutput)-1) && (ymin<=SIZE_2(gradOutput)-1)) {
xmin = max(0,xmin);
xmax = min(SIZE_3(gradOutput)-1,xmax);
ymin = max(0,ymin);
ymax = min(SIZE_2(gradOutput)-1,ymax);
// Get rbot0 data:
int idxbot0 = ((intSample * SIZE_1(rbot0) + (m-s2p)) * SIZE_2(rbot0) + (l-s2o)) * SIZE_3(rbot0) + n;
float bot0tmp = rbot0[idxbot0]; // rbot1[l+s2o,m+s2p,n]
// Index offset for gradOutput in following loops:
int op = (p+4) * 9 + (o+4); // index[o,p]
int idxopoffset = (intSample * SIZE_1(gradOutput) + op);
for (int y = ymin; y <= ymax; y++) {
for (int x = xmin; x <= xmax; x++) {
int idxgradOutput = (idxopoffset * SIZE_2(gradOutput) + y) * SIZE_3(gradOutput) + x; // gradOutput[x,y,o,p]
sum += gradOutput[idxgradOutput] * bot0tmp;
}
}
}
}
}
const int sumelems = SIZE_1(gradTwo);
const int bot1index = ((n * SIZE_2(gradTwo)) + (m-4)) * SIZE_3(gradTwo) + (l-4);
gradTwo[bot1index + intSample*SIZE_1(gradTwo)*SIZE_2(gradTwo)*SIZE_3(gradTwo)] = sum / (float)sumelems;
} }
'''
def cupy_kernel(strFunction, objVariables):
strKernel = globals()[strFunction]
while True:
objMatch = re.search('(SIZE_)([0-4])(\()([^\)]*)(\))', strKernel)
if objMatch is None:
break
# end
intArg = int(objMatch.group(2))
strTensor = objMatch.group(4)
intSizes = objVariables[strTensor].size()
strKernel = strKernel.replace(objMatch.group(), str(intSizes[intArg] if torch.is_tensor(intSizes[intArg]) == False else intSizes[intArg].item()))
while True:
objMatch = re.search('(VALUE_)([0-4])(\()([^\)]+)(\))', strKernel)
if objMatch is None:
break
# end
intArgs = int(objMatch.group(2))
strArgs = objMatch.group(4).split(',')
strTensor = strArgs[0]
intStrides = objVariables[strTensor].stride()
strIndex = [ '((' + strArgs[intArg + 1].replace('{', '(').replace('}', ')').strip() + ')*' + str(intStrides[intArg] if torch.is_tensor(intStrides[intArg]) == False else intStrides[intArg].item()) + ')' for intArg in range(intArgs) ]
strKernel = strKernel.replace(objMatch.group(0), strTensor + '[' + str.join('+', strIndex) + ']')
# end
return strKernel
# end
@cupy.memoize(for_each_device=True)
def cupy_launch(strFunction, strKernel):
if 'CUDA_HOME' not in os.environ:
os.environ['CUDA_HOME'] = cupy.cuda.get_cuda_path()
# end
return cupy.RawKernel(strKernel, strFunction, tuple(['-I ' + os.environ['CUDA_HOME'], '-I ' + os.environ['CUDA_HOME'] + '/include']))
# end
class _FunctionCorrelation(torch.autograd.Function):
@staticmethod
def forward(self, one, two):
rbot0 = one.new_zeros([ one.shape[0], one.shape[2] + 8, one.shape[3] + 8, one.shape[1] ])
rbot1 = one.new_zeros([ one.shape[0], one.shape[2] + 8, one.shape[3] + 8, one.shape[1] ])
one = one.contiguous(); assert(one.is_cuda == True)
two = two.contiguous(); assert(two.is_cuda == True)
output = one.new_zeros([ one.shape[0], 81, one.shape[2], one.shape[3] ])
if one.is_cuda == True:
n = one.shape[2] * one.shape[3]
cupy_launch('kernel_Correlation_rearrange', cupy_kernel('kernel_Correlation_rearrange', {
'input': one,
'output': rbot0
}))(
grid=tuple([ int((n + 16 - 1) / 16), one.shape[1], one.shape[0] ]),
block=tuple([ 16, 1, 1 ]),
args=[ cupy.int32(n), one.data_ptr(), rbot0.data_ptr() ]
)
n = two.shape[2] * two.shape[3]
cupy_launch('kernel_Correlation_rearrange', cupy_kernel('kernel_Correlation_rearrange', {
'input': two,
'output': rbot1
}))(
grid=tuple([ int((n + 16 - 1) / 16), two.shape[1], two.shape[0] ]),
block=tuple([ 16, 1, 1 ]),
args=[ cupy.int32(n), two.data_ptr(), rbot1.data_ptr() ]
)
n = output.shape[1] * output.shape[2] * output.shape[3]
cupy_launch('kernel_Correlation_updateOutput', cupy_kernel('kernel_Correlation_updateOutput', {
'rbot0': rbot0,
'rbot1': rbot1,
'top': output
}))(
grid=tuple([ output.shape[3], output.shape[2], output.shape[0] ]),
block=tuple([ 32, 1, 1 ]),
shared_mem=one.shape[1] * 4,
args=[ cupy.int32(n), rbot0.data_ptr(), rbot1.data_ptr(), output.data_ptr() ]
)
elif one.is_cuda == False:
raise NotImplementedError()
# end
self.save_for_backward(one, two, rbot0, rbot1)
return output
# end
@staticmethod
def backward(self, gradOutput):
one, two, rbot0, rbot1 = self.saved_tensors
gradOutput = gradOutput.contiguous(); assert(gradOutput.is_cuda == True)
gradOne = one.new_zeros([ one.shape[0], one.shape[1], one.shape[2], one.shape[3] ]) if self.needs_input_grad[0] == True else None
gradTwo = one.new_zeros([ one.shape[0], one.shape[1], one.shape[2], one.shape[3] ]) if self.needs_input_grad[1] == True else None
if one.is_cuda == True:
if gradOne is not None:
for intSample in range(one.shape[0]):
n = one.shape[1] * one.shape[2] * one.shape[3]
cupy_launch('kernel_Correlation_updateGradOne', cupy_kernel('kernel_Correlation_updateGradOne', {
'rbot0': rbot0,
'rbot1': rbot1,
'gradOutput': gradOutput,
'gradOne': gradOne,
'gradTwo': None
}))(
grid=tuple([ int((n + 512 - 1) / 512), 1, 1 ]),
block=tuple([ 512, 1, 1 ]),
args=[ cupy.int32(n), intSample, rbot0.data_ptr(), rbot1.data_ptr(), gradOutput.data_ptr(), gradOne.data_ptr(), None ]
)
# end
# end
if gradTwo is not None:
for intSample in range(one.shape[0]):
n = one.shape[1] * one.shape[2] * one.shape[3]
cupy_launch('kernel_Correlation_updateGradTwo', cupy_kernel('kernel_Correlation_updateGradTwo', {
'rbot0': rbot0,
'rbot1': rbot1,
'gradOutput': gradOutput,
'gradOne': None,
'gradTwo': gradTwo
}))(
grid=tuple([ int((n + 512 - 1) / 512), 1, 1 ]),
block=tuple([ 512, 1, 1 ]),
args=[ cupy.int32(n), intSample, rbot0.data_ptr(), rbot1.data_ptr(), gradOutput.data_ptr(), None, gradTwo.data_ptr() ]
)
# end
# end
elif one.is_cuda == False:
raise NotImplementedError()
# end
return gradOne, gradTwo
# end
# end
def FunctionCorrelation(tenOne, tenTwo):
return _FunctionCorrelation.apply(tenOne, tenTwo)
# end
class ModuleCorrelation(torch.nn.Module):
def __init__(self):
super().__init__()
# end
def forward(self, tenOne, tenTwo):
return _FunctionCorrelation.apply(tenOne, tenTwo)
# end
# end
|