|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import matplotlib |
|
import numpy as np |
|
import torch |
|
from torchvision.transforms import InterpolationMode |
|
from torchvision.transforms.functional import resize |
|
|
|
|
|
def colorize_depth_maps( |
|
depth_map, min_depth, max_depth, cmap="Spectral", valid_mask=None |
|
): |
|
""" |
|
Colorize depth maps. |
|
""" |
|
assert len(depth_map.shape) >= 2, "Invalid dimension" |
|
|
|
if isinstance(depth_map, torch.Tensor): |
|
depth = depth_map.detach().squeeze().numpy() |
|
elif isinstance(depth_map, np.ndarray): |
|
depth = depth_map.copy().squeeze() |
|
|
|
if depth.ndim < 3: |
|
depth = depth[np.newaxis, :, :] |
|
|
|
|
|
cm = matplotlib.colormaps[cmap] |
|
depth = ((depth - min_depth) / (max_depth - min_depth)).clip(0, 1) |
|
img_colored_np = cm(depth, bytes=False)[:, :, :, 0:3] |
|
img_colored_np = np.rollaxis(img_colored_np, 3, 1) |
|
|
|
if valid_mask is not None: |
|
if isinstance(depth_map, torch.Tensor): |
|
valid_mask = valid_mask.detach().numpy() |
|
valid_mask = valid_mask.squeeze() |
|
if valid_mask.ndim < 3: |
|
valid_mask = valid_mask[np.newaxis, np.newaxis, :, :] |
|
else: |
|
valid_mask = valid_mask[:, np.newaxis, :, :] |
|
valid_mask = np.repeat(valid_mask, 3, axis=1) |
|
img_colored_np[~valid_mask] = 0 |
|
|
|
if isinstance(depth_map, torch.Tensor): |
|
img_colored = torch.from_numpy(img_colored_np).float() |
|
elif isinstance(depth_map, np.ndarray): |
|
img_colored = img_colored_np |
|
|
|
return img_colored |
|
|
|
|
|
def chw2hwc(chw): |
|
assert 3 == len(chw.shape) |
|
if isinstance(chw, torch.Tensor): |
|
hwc = torch.permute(chw, (1, 2, 0)) |
|
elif isinstance(chw, np.ndarray): |
|
hwc = np.moveaxis(chw, 0, -1) |
|
return hwc |
|
|
|
def resize_max_res( |
|
img: torch.Tensor, |
|
max_edge_resolution: int, |
|
resample_method: InterpolationMode = InterpolationMode.BILINEAR, |
|
) -> torch.Tensor: |
|
""" |
|
Resize image to limit maximum edge length while keeping aspect ratio. |
|
|
|
Args: |
|
img (`torch.Tensor`): |
|
Image tensor to be resized. Expected shape: [B, C, H, W] |
|
max_edge_resolution (`int`): |
|
Maximum edge length (pixel). |
|
resample_method (`PIL.Image.Resampling`): |
|
Resampling method used to resize images. |
|
|
|
Returns: |
|
`torch.Tensor`: Resized image. |
|
""" |
|
assert 4 == img.dim(), f"Invalid input shape {img.shape}" |
|
|
|
original_height, original_width = img.shape[-2:] |
|
downscale_factor = min( |
|
max_edge_resolution / original_width, max_edge_resolution / original_height |
|
) |
|
|
|
new_width = int(original_width * downscale_factor) |
|
new_height = int(original_height * downscale_factor) |
|
|
|
resized_img = resize(img, (new_height, new_width), resample_method, antialias=True) |
|
return resized_img |
|
|
|
|
|
def get_tv_resample_method(method_str: str) -> InterpolationMode: |
|
resample_method_dict = { |
|
"bilinear": InterpolationMode.BILINEAR, |
|
"bicubic": InterpolationMode.BICUBIC, |
|
"nearest": InterpolationMode.NEAREST_EXACT, |
|
"nearest-exact": InterpolationMode.NEAREST_EXACT, |
|
} |
|
resample_method = resample_method_dict.get(method_str, None) |
|
if resample_method is None: |
|
raise ValueError(f"Unknown resampling method: {resample_method}") |
|
else: |
|
return resample_method |
|
|