Upload folder using huggingface_hub
Browse files- marigold/__init__.py +21 -0
- marigold/__pycache__/__init__.cpython-310.pyc +0 -0
- marigold/__pycache__/duplicate_unet.cpython-310.pyc +0 -0
- marigold/__pycache__/marigold_inpaint_pipeline.cpython-310.pyc +0 -0
- marigold/__pycache__/marigold_pipeline.cpython-310.pyc +0 -0
- marigold/__pycache__/marigold_xl_pipeline.cpython-310.pyc +0 -0
- marigold/duplicate_unet.py +1193 -0
- marigold/marigold_inpaint_pipeline.py +873 -0
- marigold/marigold_inpainting_pipeline.py +1 -0
- marigold/marigold_pipeline.py +1194 -0
- marigold/marigold_xl_pipeline.py +1046 -0
- marigold/pipeline_stable_diffusion_inpaint.py +1068 -0
- marigold/util/__pycache__/batchsize.cpython-310.pyc +0 -0
- marigold/util/__pycache__/ensemble.cpython-310.pyc +0 -0
- marigold/util/__pycache__/image_util.cpython-310.pyc +0 -0
- marigold/util/batchsize.py +81 -0
- marigold/util/ensemble.py +200 -0
- marigold/util/image_util.py +122 -0
marigold/__init__.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Bingxin Ke, ETH Zurich. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# --------------------------------------------------------------------------
|
15 |
+
# If you find this code useful, we kindly ask you to cite our paper in your work.
|
16 |
+
# Please find bibtex at: https://github.com/prs-eth/Marigold#-citation
|
17 |
+
# More information about the method can be found at https://marigoldmonodepth.github.io
|
18 |
+
# --------------------------------------------------------------------------
|
19 |
+
|
20 |
+
from .marigold_pipeline import MarigoldPipeline, MarigoldDepthOutput # noqa: F401
|
21 |
+
from .duplicate_unet import DoubleUNet2DConditionModel
|
marigold/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (294 Bytes). View file
|
|
marigold/__pycache__/duplicate_unet.cpython-310.pyc
ADDED
Binary file (36.4 kB). View file
|
|
marigold/__pycache__/marigold_inpaint_pipeline.cpython-310.pyc
ADDED
Binary file (24.5 kB). View file
|
|
marigold/__pycache__/marigold_pipeline.cpython-310.pyc
ADDED
Binary file (28 kB). View file
|
|
marigold/__pycache__/marigold_xl_pipeline.cpython-310.pyc
ADDED
Binary file (26.5 kB). View file
|
|
marigold/duplicate_unet.py
ADDED
@@ -0,0 +1,1193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import pdb
|
15 |
+
from dataclasses import dataclass
|
16 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
import torch.utils.checkpoint
|
21 |
+
import copy
|
22 |
+
|
23 |
+
import peft
|
24 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
25 |
+
from diffusers.loaders import UNet2DConditionLoadersMixin
|
26 |
+
from diffusers.utils import BaseOutput, logging
|
27 |
+
from diffusers.models.activations import get_activation
|
28 |
+
from diffusers.models.attention_processor import (
|
29 |
+
ADDED_KV_ATTENTION_PROCESSORS,
|
30 |
+
CROSS_ATTENTION_PROCESSORS,
|
31 |
+
AttentionProcessor,
|
32 |
+
AttnAddedKVProcessor,
|
33 |
+
AttnProcessor,
|
34 |
+
)
|
35 |
+
from diffusers.models.embeddings import (
|
36 |
+
GaussianFourierProjection,
|
37 |
+
ImageHintTimeEmbedding,
|
38 |
+
ImageProjection,
|
39 |
+
ImageTimeEmbedding,
|
40 |
+
TextImageProjection,
|
41 |
+
TextImageTimeEmbedding,
|
42 |
+
TextTimeEmbedding,
|
43 |
+
TimestepEmbedding,
|
44 |
+
Timesteps,
|
45 |
+
)
|
46 |
+
from diffusers.models.modeling_utils import ModelMixin
|
47 |
+
from diffusers.models.unet_2d_blocks import (
|
48 |
+
UNetMidBlock2DCrossAttn,
|
49 |
+
UNetMidBlock2DSimpleCrossAttn,
|
50 |
+
get_down_block,
|
51 |
+
get_up_block,
|
52 |
+
)
|
53 |
+
from diffusers.models import UNet2DConditionModel
|
54 |
+
|
55 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
56 |
+
|
57 |
+
|
58 |
+
@dataclass
|
59 |
+
class UNet2DConditionOutput(BaseOutput):
|
60 |
+
"""
|
61 |
+
The output of [`UNet2DConditionModel`].
|
62 |
+
|
63 |
+
Args:
|
64 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
65 |
+
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
|
66 |
+
"""
|
67 |
+
|
68 |
+
sample: torch.FloatTensor = None
|
69 |
+
|
70 |
+
|
71 |
+
class DoubleUNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
|
72 |
+
r"""
|
73 |
+
A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
|
74 |
+
shaped output.
|
75 |
+
|
76 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
77 |
+
for all models (such as downloading or saving).
|
78 |
+
|
79 |
+
Parameters:
|
80 |
+
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
81 |
+
Height and width of input/output sample.
|
82 |
+
in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
|
83 |
+
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
|
84 |
+
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
|
85 |
+
flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
|
86 |
+
Whether to flip the sin to cos in the time embedding.
|
87 |
+
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
|
88 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
89 |
+
The tuple of downsample blocks to use.
|
90 |
+
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
|
91 |
+
Block type for middle of UNet, it can be either `UNetMidBlock2DCrossAttn` or
|
92 |
+
`UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
|
93 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
|
94 |
+
The tuple of upsample blocks to use.
|
95 |
+
only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
|
96 |
+
Whether to include self-attention in the basic transformer blocks, see
|
97 |
+
[`~models.attention.BasicTransformerBlock`].
|
98 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
99 |
+
The tuple of output channels for each block.
|
100 |
+
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
|
101 |
+
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
|
102 |
+
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
|
103 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
104 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
105 |
+
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
|
106 |
+
If `None`, normalization and activation layers is skipped in post-processing.
|
107 |
+
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
|
108 |
+
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
|
109 |
+
The dimension of the cross attention features.
|
110 |
+
transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
|
111 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
112 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
113 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
114 |
+
encoder_hid_dim (`int`, *optional*, defaults to None):
|
115 |
+
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
116 |
+
dimension to `cross_attention_dim`.
|
117 |
+
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
118 |
+
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
119 |
+
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
120 |
+
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
|
121 |
+
num_attention_heads (`int`, *optional*):
|
122 |
+
The number of attention heads. If not defined, defaults to `attention_head_dim`
|
123 |
+
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
|
124 |
+
for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
|
125 |
+
class_embed_type (`str`, *optional*, defaults to `None`):
|
126 |
+
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
|
127 |
+
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
128 |
+
addition_embed_type (`str`, *optional*, defaults to `None`):
|
129 |
+
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
130 |
+
"text". "text" will use the `TextTimeEmbedding` layer.
|
131 |
+
addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
|
132 |
+
Dimension for the timestep embeddings.
|
133 |
+
num_class_embeds (`int`, *optional*, defaults to `None`):
|
134 |
+
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
135 |
+
class conditioning with `class_embed_type` equal to `None`.
|
136 |
+
time_embedding_type (`str`, *optional*, defaults to `positional`):
|
137 |
+
The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
|
138 |
+
time_embedding_dim (`int`, *optional*, defaults to `None`):
|
139 |
+
An optional override for the dimension of the projected time embedding.
|
140 |
+
time_embedding_act_fn (`str`, *optional*, defaults to `None`):
|
141 |
+
Optional activation function to use only once on the time embeddings before they are passed to the rest of
|
142 |
+
the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
|
143 |
+
timestep_post_act (`str`, *optional*, defaults to `None`):
|
144 |
+
The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
|
145 |
+
time_cond_proj_dim (`int`, *optional*, defaults to `None`):
|
146 |
+
The dimension of `cond_proj` layer in the timestep embedding.
|
147 |
+
conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
|
148 |
+
conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
|
149 |
+
projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
|
150 |
+
`class_embed_type="projection"`. Required when `class_embed_type="projection"`.
|
151 |
+
class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
|
152 |
+
embeddings with the class embeddings.
|
153 |
+
mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
|
154 |
+
Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
|
155 |
+
`only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
|
156 |
+
`only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
|
157 |
+
otherwise.
|
158 |
+
"""
|
159 |
+
|
160 |
+
_supports_gradient_checkpointing = True
|
161 |
+
|
162 |
+
@register_to_config
|
163 |
+
def __init__(
|
164 |
+
self,
|
165 |
+
sample_size: Optional[int] = None,
|
166 |
+
in_channels: int = 4,
|
167 |
+
out_channels: int = 4,
|
168 |
+
center_input_sample: bool = False,
|
169 |
+
flip_sin_to_cos: bool = True,
|
170 |
+
freq_shift: int = 0,
|
171 |
+
down_block_types: Tuple[str] = (
|
172 |
+
"CrossAttnDownBlock2D",
|
173 |
+
"CrossAttnDownBlock2D",
|
174 |
+
"CrossAttnDownBlock2D",
|
175 |
+
"DownBlock2D",
|
176 |
+
),
|
177 |
+
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
|
178 |
+
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
|
179 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
180 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
181 |
+
layers_per_block: Union[int, Tuple[int]] = 2,
|
182 |
+
downsample_padding: int = 1,
|
183 |
+
mid_block_scale_factor: float = 1,
|
184 |
+
dropout: float = 0.0,
|
185 |
+
act_fn: str = "silu",
|
186 |
+
norm_num_groups: Optional[int] = 32,
|
187 |
+
norm_eps: float = 1e-5,
|
188 |
+
cross_attention_dim: Union[int, Tuple[int]] = 1280,
|
189 |
+
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
190 |
+
encoder_hid_dim: Optional[int] = None,
|
191 |
+
encoder_hid_dim_type: Optional[str] = None,
|
192 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
193 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
194 |
+
dual_cross_attention: bool = False,
|
195 |
+
use_linear_projection: bool = False,
|
196 |
+
class_embed_type: Optional[str] = None,
|
197 |
+
addition_embed_type: Optional[str] = None,
|
198 |
+
addition_time_embed_dim: Optional[int] = None,
|
199 |
+
num_class_embeds: Optional[int] = None,
|
200 |
+
upcast_attention: bool = False,
|
201 |
+
resnet_time_scale_shift: str = "default",
|
202 |
+
resnet_skip_time_act: bool = False,
|
203 |
+
resnet_out_scale_factor: int = 1.0,
|
204 |
+
time_embedding_type: str = "positional",
|
205 |
+
time_embedding_dim: Optional[int] = None,
|
206 |
+
time_embedding_act_fn: Optional[str] = None,
|
207 |
+
timestep_post_act: Optional[str] = None,
|
208 |
+
time_cond_proj_dim: Optional[int] = None,
|
209 |
+
conv_in_kernel: int = 3,
|
210 |
+
conv_out_kernel: int = 3,
|
211 |
+
projection_class_embeddings_input_dim: Optional[int] = None,
|
212 |
+
attention_type: str = "default",
|
213 |
+
class_embeddings_concat: bool = False,
|
214 |
+
mid_block_only_cross_attention: Optional[bool] = None,
|
215 |
+
cross_attention_norm: Optional[str] = None,
|
216 |
+
addition_embed_type_num_heads=64,
|
217 |
+
):
|
218 |
+
super().__init__()
|
219 |
+
|
220 |
+
self.sample_size = sample_size
|
221 |
+
|
222 |
+
if num_attention_heads is not None:
|
223 |
+
raise ValueError(
|
224 |
+
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
|
225 |
+
)
|
226 |
+
|
227 |
+
# If `num_attention_heads` is not defined (which is the case for most models)
|
228 |
+
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
229 |
+
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
230 |
+
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
231 |
+
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
232 |
+
# which is why we correct for the naming here.
|
233 |
+
num_attention_heads = num_attention_heads or attention_head_dim
|
234 |
+
|
235 |
+
# Check inputs
|
236 |
+
if len(down_block_types) != len(up_block_types):
|
237 |
+
raise ValueError(
|
238 |
+
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
239 |
+
)
|
240 |
+
|
241 |
+
if len(block_out_channels) != len(down_block_types):
|
242 |
+
raise ValueError(
|
243 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
244 |
+
)
|
245 |
+
|
246 |
+
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
247 |
+
raise ValueError(
|
248 |
+
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
249 |
+
)
|
250 |
+
|
251 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
252 |
+
raise ValueError(
|
253 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
254 |
+
)
|
255 |
+
|
256 |
+
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
|
257 |
+
raise ValueError(
|
258 |
+
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
|
259 |
+
)
|
260 |
+
|
261 |
+
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
|
262 |
+
raise ValueError(
|
263 |
+
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
|
264 |
+
)
|
265 |
+
|
266 |
+
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
|
267 |
+
raise ValueError(
|
268 |
+
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
|
269 |
+
)
|
270 |
+
|
271 |
+
# input
|
272 |
+
conv_in_padding = (conv_in_kernel - 1) // 2
|
273 |
+
self.conv_in = nn.Conv2d(
|
274 |
+
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
275 |
+
)
|
276 |
+
|
277 |
+
# time
|
278 |
+
if time_embedding_type == "fourier":
|
279 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
|
280 |
+
if time_embed_dim % 2 != 0:
|
281 |
+
raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
|
282 |
+
self.time_proj = GaussianFourierProjection(
|
283 |
+
time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
|
284 |
+
)
|
285 |
+
timestep_input_dim = time_embed_dim
|
286 |
+
elif time_embedding_type == "positional":
|
287 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
|
288 |
+
|
289 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
290 |
+
timestep_input_dim = block_out_channels[0]
|
291 |
+
else:
|
292 |
+
raise ValueError(
|
293 |
+
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
|
294 |
+
)
|
295 |
+
|
296 |
+
self.time_embedding = TimestepEmbedding(
|
297 |
+
timestep_input_dim,
|
298 |
+
time_embed_dim,
|
299 |
+
act_fn=act_fn,
|
300 |
+
post_act_fn=timestep_post_act,
|
301 |
+
cond_proj_dim=time_cond_proj_dim,
|
302 |
+
)
|
303 |
+
|
304 |
+
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
305 |
+
encoder_hid_dim_type = "text_proj"
|
306 |
+
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
307 |
+
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
|
308 |
+
|
309 |
+
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
310 |
+
raise ValueError(
|
311 |
+
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
312 |
+
)
|
313 |
+
|
314 |
+
if encoder_hid_dim_type == "text_proj":
|
315 |
+
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
316 |
+
elif encoder_hid_dim_type == "text_image_proj":
|
317 |
+
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
318 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
319 |
+
# case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
|
320 |
+
self.encoder_hid_proj = TextImageProjection(
|
321 |
+
text_embed_dim=encoder_hid_dim,
|
322 |
+
image_embed_dim=cross_attention_dim,
|
323 |
+
cross_attention_dim=cross_attention_dim,
|
324 |
+
)
|
325 |
+
elif encoder_hid_dim_type == "image_proj":
|
326 |
+
# Kandinsky 2.2
|
327 |
+
self.encoder_hid_proj = ImageProjection(
|
328 |
+
image_embed_dim=encoder_hid_dim,
|
329 |
+
cross_attention_dim=cross_attention_dim,
|
330 |
+
)
|
331 |
+
elif encoder_hid_dim_type is not None:
|
332 |
+
raise ValueError(
|
333 |
+
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
334 |
+
)
|
335 |
+
else:
|
336 |
+
self.encoder_hid_proj = None
|
337 |
+
|
338 |
+
# class embedding
|
339 |
+
if class_embed_type is None and num_class_embeds is not None:
|
340 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
341 |
+
elif class_embed_type == "timestep":
|
342 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
|
343 |
+
elif class_embed_type == "identity":
|
344 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
345 |
+
elif class_embed_type == "projection":
|
346 |
+
if projection_class_embeddings_input_dim is None:
|
347 |
+
raise ValueError(
|
348 |
+
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
349 |
+
)
|
350 |
+
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
351 |
+
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
352 |
+
# 2. it projects from an arbitrary input dimension.
|
353 |
+
#
|
354 |
+
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
355 |
+
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
356 |
+
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
357 |
+
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
358 |
+
elif class_embed_type == "simple_projection":
|
359 |
+
if projection_class_embeddings_input_dim is None:
|
360 |
+
raise ValueError(
|
361 |
+
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
|
362 |
+
)
|
363 |
+
self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
|
364 |
+
else:
|
365 |
+
self.class_embedding = None
|
366 |
+
|
367 |
+
if addition_embed_type == "text":
|
368 |
+
if encoder_hid_dim is not None:
|
369 |
+
text_time_embedding_from_dim = encoder_hid_dim
|
370 |
+
else:
|
371 |
+
text_time_embedding_from_dim = cross_attention_dim
|
372 |
+
|
373 |
+
self.add_embedding = TextTimeEmbedding(
|
374 |
+
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
|
375 |
+
)
|
376 |
+
elif addition_embed_type == "text_image":
|
377 |
+
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
378 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
379 |
+
# case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
|
380 |
+
self.add_embedding = TextImageTimeEmbedding(
|
381 |
+
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
|
382 |
+
)
|
383 |
+
elif addition_embed_type == "text_time":
|
384 |
+
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
|
385 |
+
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
386 |
+
elif addition_embed_type == "image":
|
387 |
+
# Kandinsky 2.2
|
388 |
+
self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
389 |
+
elif addition_embed_type == "image_hint":
|
390 |
+
# Kandinsky 2.2 ControlNet
|
391 |
+
self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
392 |
+
elif addition_embed_type is not None:
|
393 |
+
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
|
394 |
+
|
395 |
+
if time_embedding_act_fn is None:
|
396 |
+
self.time_embed_act = None
|
397 |
+
else:
|
398 |
+
self.time_embed_act = get_activation(time_embedding_act_fn)
|
399 |
+
|
400 |
+
self.down_blocks = nn.ModuleList([])
|
401 |
+
self.up_blocks = nn.ModuleList([])
|
402 |
+
|
403 |
+
if isinstance(only_cross_attention, bool):
|
404 |
+
if mid_block_only_cross_attention is None:
|
405 |
+
mid_block_only_cross_attention = only_cross_attention
|
406 |
+
|
407 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
408 |
+
|
409 |
+
if mid_block_only_cross_attention is None:
|
410 |
+
mid_block_only_cross_attention = False
|
411 |
+
|
412 |
+
if isinstance(num_attention_heads, int):
|
413 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
414 |
+
|
415 |
+
if isinstance(attention_head_dim, int):
|
416 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
417 |
+
|
418 |
+
if isinstance(cross_attention_dim, int):
|
419 |
+
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
|
420 |
+
|
421 |
+
if isinstance(layers_per_block, int):
|
422 |
+
layers_per_block = [layers_per_block] * len(down_block_types)
|
423 |
+
|
424 |
+
if isinstance(transformer_layers_per_block, int):
|
425 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
426 |
+
|
427 |
+
if class_embeddings_concat:
|
428 |
+
# The time embeddings are concatenated with the class embeddings. The dimension of the
|
429 |
+
# time embeddings passed to the down, middle, and up blocks is twice the dimension of the
|
430 |
+
# regular time embeddings
|
431 |
+
blocks_time_embed_dim = time_embed_dim * 2
|
432 |
+
else:
|
433 |
+
blocks_time_embed_dim = time_embed_dim
|
434 |
+
|
435 |
+
# interact layer:
|
436 |
+
self.down_rgb2depth = nn.ModuleList([])
|
437 |
+
self.down_depth2rgb = nn.ModuleList([])
|
438 |
+
|
439 |
+
# down
|
440 |
+
output_channel = block_out_channels[0]
|
441 |
+
for i, down_block_type in enumerate(down_block_types):
|
442 |
+
input_channel = output_channel
|
443 |
+
output_channel = block_out_channels[i]
|
444 |
+
is_final_block = i == len(block_out_channels) - 1
|
445 |
+
|
446 |
+
down_block = get_down_block(
|
447 |
+
down_block_type,
|
448 |
+
num_layers=layers_per_block[i],
|
449 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
450 |
+
in_channels=input_channel,
|
451 |
+
out_channels=output_channel,
|
452 |
+
temb_channels=blocks_time_embed_dim,
|
453 |
+
add_downsample=not is_final_block,
|
454 |
+
resnet_eps=norm_eps,
|
455 |
+
resnet_act_fn=act_fn,
|
456 |
+
resnet_groups=norm_num_groups,
|
457 |
+
cross_attention_dim=cross_attention_dim[i],
|
458 |
+
num_attention_heads=num_attention_heads[i],
|
459 |
+
downsample_padding=downsample_padding,
|
460 |
+
dual_cross_attention=dual_cross_attention,
|
461 |
+
use_linear_projection=use_linear_projection,
|
462 |
+
only_cross_attention=only_cross_attention[i],
|
463 |
+
upcast_attention=upcast_attention,
|
464 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
465 |
+
attention_type=attention_type,
|
466 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
467 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
468 |
+
cross_attention_norm=cross_attention_norm,
|
469 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
470 |
+
dropout=dropout,
|
471 |
+
)
|
472 |
+
self.down_blocks.append(down_block)
|
473 |
+
|
474 |
+
rgb2depth_block = nn.Conv2d(input_channel, input_channel, kernel_size=1)
|
475 |
+
rgb2depth_block = self.zero_module(rgb2depth_block)
|
476 |
+
self.down_rgb2depth.append(rgb2depth_block)
|
477 |
+
depth2rgb_block = nn.Conv2d(input_channel, input_channel, kernel_size=1)
|
478 |
+
depth2rgb_block = self.zero_module(depth2rgb_block)
|
479 |
+
self.down_depth2rgb.append(depth2rgb_block)
|
480 |
+
|
481 |
+
for _ in range(layers_per_block[i]):
|
482 |
+
rgb2depth_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
483 |
+
rgb2depth_block = self.zero_module(rgb2depth_block)
|
484 |
+
self.down_rgb2depth.append(rgb2depth_block)
|
485 |
+
depth2rgb_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
486 |
+
depth2rgb_block = self.zero_module(depth2rgb_block)
|
487 |
+
self.down_depth2rgb.append(depth2rgb_block)
|
488 |
+
#
|
489 |
+
# if not is_final_block:
|
490 |
+
# rgb2depth_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
491 |
+
# rgb2depth_block = self.zero_module(rgb2depth_block)
|
492 |
+
# self.down_rgb2depth.append(rgb2depth_block)
|
493 |
+
# depth2rgb_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
494 |
+
# depth2rgb_block = self.zero_module(depth2rgb_block)
|
495 |
+
# self.down_depth2rgb.append(depth2rgb_block)
|
496 |
+
|
497 |
+
|
498 |
+
mid_block_channel = block_out_channels[-1]
|
499 |
+
|
500 |
+
rgb2depth_block = nn.Conv2d(mid_block_channel, mid_block_channel, kernel_size=1)
|
501 |
+
rgb2depth_block = self.zero_module(rgb2depth_block)
|
502 |
+
self.mid_rgb2depth = rgb2depth_block
|
503 |
+
|
504 |
+
depth2rgb_block = nn.Conv2d(mid_block_channel, mid_block_channel, kernel_size=1)
|
505 |
+
depth2rgb_block = self.zero_module(depth2rgb_block)
|
506 |
+
self.mid_depth2rgb = depth2rgb_block
|
507 |
+
|
508 |
+
# mid
|
509 |
+
if mid_block_type == "UNetMidBlock2DCrossAttn":
|
510 |
+
self.mid_block = UNetMidBlock2DCrossAttn(
|
511 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
512 |
+
in_channels=block_out_channels[-1],
|
513 |
+
temb_channels=blocks_time_embed_dim,
|
514 |
+
dropout=dropout,
|
515 |
+
resnet_eps=norm_eps,
|
516 |
+
resnet_act_fn=act_fn,
|
517 |
+
output_scale_factor=mid_block_scale_factor,
|
518 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
519 |
+
cross_attention_dim=cross_attention_dim[-1],
|
520 |
+
num_attention_heads=num_attention_heads[-1],
|
521 |
+
resnet_groups=norm_num_groups,
|
522 |
+
dual_cross_attention=dual_cross_attention,
|
523 |
+
use_linear_projection=use_linear_projection,
|
524 |
+
upcast_attention=upcast_attention,
|
525 |
+
attention_type=attention_type,
|
526 |
+
)
|
527 |
+
elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
|
528 |
+
self.mid_block = UNetMidBlock2DSimpleCrossAttn(
|
529 |
+
in_channels=block_out_channels[-1],
|
530 |
+
temb_channels=blocks_time_embed_dim,
|
531 |
+
dropout=dropout,
|
532 |
+
resnet_eps=norm_eps,
|
533 |
+
resnet_act_fn=act_fn,
|
534 |
+
output_scale_factor=mid_block_scale_factor,
|
535 |
+
cross_attention_dim=cross_attention_dim[-1],
|
536 |
+
attention_head_dim=attention_head_dim[-1],
|
537 |
+
resnet_groups=norm_num_groups,
|
538 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
539 |
+
skip_time_act=resnet_skip_time_act,
|
540 |
+
only_cross_attention=mid_block_only_cross_attention,
|
541 |
+
cross_attention_norm=cross_attention_norm,
|
542 |
+
)
|
543 |
+
elif mid_block_type is None:
|
544 |
+
self.mid_block = None
|
545 |
+
else:
|
546 |
+
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
547 |
+
|
548 |
+
# count how many layers upsample the images
|
549 |
+
self.num_upsamplers = 0
|
550 |
+
|
551 |
+
# up
|
552 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
553 |
+
reversed_num_attention_heads = list(reversed(num_attention_heads))
|
554 |
+
reversed_layers_per_block = list(reversed(layers_per_block))
|
555 |
+
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
|
556 |
+
reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block))
|
557 |
+
only_cross_attention = list(reversed(only_cross_attention))
|
558 |
+
|
559 |
+
output_channel = reversed_block_out_channels[0]
|
560 |
+
|
561 |
+
for i, up_block_type in enumerate(up_block_types):
|
562 |
+
is_final_block = i == len(block_out_channels) - 1
|
563 |
+
|
564 |
+
prev_output_channel = output_channel
|
565 |
+
output_channel = reversed_block_out_channels[i]
|
566 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
567 |
+
|
568 |
+
# add upsample block for all BUT final layer
|
569 |
+
if not is_final_block:
|
570 |
+
add_upsample = True
|
571 |
+
self.num_upsamplers += 1
|
572 |
+
else:
|
573 |
+
add_upsample = False
|
574 |
+
|
575 |
+
up_block = get_up_block(
|
576 |
+
up_block_type,
|
577 |
+
num_layers=reversed_layers_per_block[i] + 1,
|
578 |
+
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
|
579 |
+
in_channels=input_channel,
|
580 |
+
out_channels=output_channel,
|
581 |
+
prev_output_channel=prev_output_channel,
|
582 |
+
temb_channels=blocks_time_embed_dim,
|
583 |
+
add_upsample=add_upsample,
|
584 |
+
resnet_eps=norm_eps,
|
585 |
+
resnet_act_fn=act_fn,
|
586 |
+
resolution_idx=i,
|
587 |
+
resnet_groups=norm_num_groups,
|
588 |
+
cross_attention_dim=reversed_cross_attention_dim[i],
|
589 |
+
num_attention_heads=reversed_num_attention_heads[i],
|
590 |
+
dual_cross_attention=dual_cross_attention,
|
591 |
+
use_linear_projection=use_linear_projection,
|
592 |
+
only_cross_attention=only_cross_attention[i],
|
593 |
+
upcast_attention=upcast_attention,
|
594 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
595 |
+
attention_type=attention_type,
|
596 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
597 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
598 |
+
cross_attention_norm=cross_attention_norm,
|
599 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
600 |
+
dropout=dropout,
|
601 |
+
)
|
602 |
+
self.up_blocks.append(up_block)
|
603 |
+
prev_output_channel = output_channel
|
604 |
+
|
605 |
+
# out
|
606 |
+
if norm_num_groups is not None:
|
607 |
+
self.conv_norm_out = nn.GroupNorm(
|
608 |
+
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
|
609 |
+
)
|
610 |
+
|
611 |
+
self.conv_act = get_activation(act_fn)
|
612 |
+
|
613 |
+
else:
|
614 |
+
self.conv_norm_out = None
|
615 |
+
self.conv_act = None
|
616 |
+
|
617 |
+
conv_out_padding = (conv_out_kernel - 1) // 2
|
618 |
+
self.conv_out = nn.Conv2d(
|
619 |
+
block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
|
620 |
+
)
|
621 |
+
self.separate_list = None
|
622 |
+
self.rgb_conv_in_double = 0
|
623 |
+
self.depth_conv_in_double = 0
|
624 |
+
|
625 |
+
def inpaint_rgb_conv_in(self): # replace the first layer to accept 13 in_channels
|
626 |
+
_n_convin_out_channel = self.conv_in.out_channels
|
627 |
+
_new_conv_in = nn.Conv2d(13, _n_convin_out_channel, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
628 |
+
self.conv_in = _new_conv_in
|
629 |
+
|
630 |
+
print("Unet rgb conv_in layer is replaced by 13 conv_in channel")
|
631 |
+
return
|
632 |
+
|
633 |
+
def inpaint_depth_conv_in(self): # replace the first layer to accept 13 in_channels
|
634 |
+
_n_convin_out_channel = self.depth_conv_in.out_channels
|
635 |
+
_new_conv_in = nn.Conv2d(13, _n_convin_out_channel, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
636 |
+
self.depth_conv_in = _new_conv_in
|
637 |
+
print("Unet depth conv_in layer is replaced by 13 conv_in channel")
|
638 |
+
return
|
639 |
+
|
640 |
+
def duplicate_model(self):
|
641 |
+
self.depth_time_embedding = copy.deepcopy(self.time_embedding)
|
642 |
+
self.depth_time_proj = copy.deepcopy(self.time_proj)
|
643 |
+
|
644 |
+
self.depth_conv_in = copy.deepcopy(self.conv_in)
|
645 |
+
self.depth_conv_norm_out = copy.deepcopy(self.conv_norm_out)
|
646 |
+
self.depth_conv_act = copy.deepcopy(self.conv_act)
|
647 |
+
self.depth_conv_out = copy.deepcopy(self.conv_out)
|
648 |
+
|
649 |
+
self.depth_down_blocks = nn.ModuleList()
|
650 |
+
self.depth_up_blocks = nn.ModuleList()
|
651 |
+
|
652 |
+
for i in range(len(self.down_blocks)):
|
653 |
+
self.depth_down_blocks.append(copy.deepcopy(self.down_blocks[i]))
|
654 |
+
for i in range(len(self.up_blocks)):
|
655 |
+
self.depth_up_blocks.append(copy.deepcopy(self.up_blocks[i]))
|
656 |
+
|
657 |
+
self.depth_mid_block = copy.deepcopy(self.mid_block)
|
658 |
+
|
659 |
+
return
|
660 |
+
|
661 |
+
def zero_module(self, module):
|
662 |
+
for p in module.parameters():
|
663 |
+
nn.init.zeros_(p)
|
664 |
+
return module
|
665 |
+
|
666 |
+
@property
|
667 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
668 |
+
r"""
|
669 |
+
Returns:
|
670 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
671 |
+
indexed by its weight name.
|
672 |
+
"""
|
673 |
+
# set recursively
|
674 |
+
processors = {}
|
675 |
+
|
676 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
677 |
+
if hasattr(module, "get_processor"):
|
678 |
+
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
|
679 |
+
|
680 |
+
for sub_name, child in module.named_children():
|
681 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
682 |
+
|
683 |
+
return processors
|
684 |
+
|
685 |
+
for name, module in self.named_children():
|
686 |
+
fn_recursive_add_processors(name, module, processors)
|
687 |
+
|
688 |
+
return processors
|
689 |
+
|
690 |
+
def set_attn_processor(
|
691 |
+
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False
|
692 |
+
):
|
693 |
+
r"""
|
694 |
+
Sets the attention processor to use to compute attention.
|
695 |
+
|
696 |
+
Parameters:
|
697 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
698 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
699 |
+
for **all** `Attention` layers.
|
700 |
+
|
701 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
702 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
703 |
+
|
704 |
+
"""
|
705 |
+
count = len(self.attn_processors.keys())
|
706 |
+
|
707 |
+
if isinstance(processor, dict) and len(processor) != count:
|
708 |
+
raise ValueError(
|
709 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
710 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
711 |
+
)
|
712 |
+
|
713 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
714 |
+
if hasattr(module, "set_processor"):
|
715 |
+
if not isinstance(processor, dict):
|
716 |
+
module.set_processor(processor, _remove_lora=_remove_lora)
|
717 |
+
else:
|
718 |
+
module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora)
|
719 |
+
|
720 |
+
for sub_name, child in module.named_children():
|
721 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
722 |
+
|
723 |
+
for name, module in self.named_children():
|
724 |
+
fn_recursive_attn_processor(name, module, processor)
|
725 |
+
|
726 |
+
def set_default_attn_processor(self):
|
727 |
+
"""
|
728 |
+
Disables custom attention processors and sets the default attention implementation.
|
729 |
+
"""
|
730 |
+
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
731 |
+
processor = AttnAddedKVProcessor()
|
732 |
+
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
733 |
+
processor = AttnProcessor()
|
734 |
+
else:
|
735 |
+
raise ValueError(
|
736 |
+
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
737 |
+
)
|
738 |
+
|
739 |
+
self.set_attn_processor(processor, _remove_lora=True)
|
740 |
+
|
741 |
+
def set_attention_slice(self, slice_size):
|
742 |
+
r"""
|
743 |
+
Enable sliced attention computation.
|
744 |
+
|
745 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
746 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
747 |
+
|
748 |
+
Args:
|
749 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
750 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
751 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
752 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
753 |
+
must be a multiple of `slice_size`.
|
754 |
+
"""
|
755 |
+
sliceable_head_dims = []
|
756 |
+
|
757 |
+
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
758 |
+
if hasattr(module, "set_attention_slice"):
|
759 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
760 |
+
|
761 |
+
for child in module.children():
|
762 |
+
fn_recursive_retrieve_sliceable_dims(child)
|
763 |
+
|
764 |
+
# retrieve number of attention layers
|
765 |
+
for module in self.children():
|
766 |
+
fn_recursive_retrieve_sliceable_dims(module)
|
767 |
+
|
768 |
+
num_sliceable_layers = len(sliceable_head_dims)
|
769 |
+
|
770 |
+
if slice_size == "auto":
|
771 |
+
# half the attention head size is usually a good trade-off between
|
772 |
+
# speed and memory
|
773 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
774 |
+
elif slice_size == "max":
|
775 |
+
# make smallest slice possible
|
776 |
+
slice_size = num_sliceable_layers * [1]
|
777 |
+
|
778 |
+
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
779 |
+
|
780 |
+
if len(slice_size) != len(sliceable_head_dims):
|
781 |
+
raise ValueError(
|
782 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
783 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
784 |
+
)
|
785 |
+
|
786 |
+
for i in range(len(slice_size)):
|
787 |
+
size = slice_size[i]
|
788 |
+
dim = sliceable_head_dims[i]
|
789 |
+
if size is not None and size > dim:
|
790 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
791 |
+
|
792 |
+
# Recursively walk through all the children.
|
793 |
+
# Any children which exposes the set_attention_slice method
|
794 |
+
# gets the message
|
795 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
796 |
+
if hasattr(module, "set_attention_slice"):
|
797 |
+
module.set_attention_slice(slice_size.pop())
|
798 |
+
|
799 |
+
for child in module.children():
|
800 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
801 |
+
|
802 |
+
reversed_slice_size = list(reversed(slice_size))
|
803 |
+
for module in self.children():
|
804 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
805 |
+
|
806 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
807 |
+
if hasattr(module, "gradient_checkpointing"):
|
808 |
+
module.gradient_checkpointing = value
|
809 |
+
|
810 |
+
def enable_freeu(self, s1, s2, b1, b2):
|
811 |
+
r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497.
|
812 |
+
|
813 |
+
The suffixes after the scaling factors represent the stage blocks where they are being applied.
|
814 |
+
|
815 |
+
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that
|
816 |
+
are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
|
817 |
+
|
818 |
+
Args:
|
819 |
+
s1 (`float`):
|
820 |
+
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
|
821 |
+
mitigate the "oversmoothing effect" in the enhanced denoising process.
|
822 |
+
s2 (`float`):
|
823 |
+
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
|
824 |
+
mitigate the "oversmoothing effect" in the enhanced denoising process.
|
825 |
+
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
|
826 |
+
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
|
827 |
+
"""
|
828 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
829 |
+
setattr(upsample_block, "s1", s1)
|
830 |
+
setattr(upsample_block, "s2", s2)
|
831 |
+
setattr(upsample_block, "b1", b1)
|
832 |
+
setattr(upsample_block, "b2", b2)
|
833 |
+
|
834 |
+
def disable_freeu(self):
|
835 |
+
"""Disables the FreeU mechanism."""
|
836 |
+
freeu_keys = {"s1", "s2", "b1", "b2"}
|
837 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
838 |
+
for k in freeu_keys:
|
839 |
+
if hasattr(upsample_block, k) or getattr(upsample_block, k) is not None:
|
840 |
+
setattr(upsample_block, k, None)
|
841 |
+
|
842 |
+
def forward(
|
843 |
+
self,
|
844 |
+
sample: torch.FloatTensor,
|
845 |
+
# timestep: Union[torch.Tensor, float, int],
|
846 |
+
rgb_timestep: Union[torch.Tensor, float, int],
|
847 |
+
depth_timestep: Union[torch.Tensor, float, int],
|
848 |
+
encoder_hidden_states: torch.Tensor,
|
849 |
+
controlnet_connection: bool = True,
|
850 |
+
class_labels: Optional[torch.Tensor] = None,
|
851 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
852 |
+
attention_mask: Optional[torch.Tensor] = None,
|
853 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
854 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
855 |
+
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
856 |
+
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
857 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
858 |
+
return_dict: bool = True,
|
859 |
+
depth2rgb_scale: float = 1.,
|
860 |
+
rgb2depth_scale: float = 1.
|
861 |
+
) -> Union[UNet2DConditionOutput, Tuple]:
|
862 |
+
r"""
|
863 |
+
The [`UNet2DConditionModel`] forward method.
|
864 |
+
|
865 |
+
Args:
|
866 |
+
sample (`torch.FloatTensor`):
|
867 |
+
The noisy input tensor with the following shape `(batch, channel, height, width)`.
|
868 |
+
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
|
869 |
+
encoder_hidden_states (`torch.FloatTensor`):
|
870 |
+
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
|
871 |
+
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
|
872 |
+
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
873 |
+
timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):
|
874 |
+
Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
|
875 |
+
through the `self.time_embedding` layer to obtain the timestep embeddings.
|
876 |
+
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
|
877 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
878 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
879 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
880 |
+
cross_attention_kwargs (`dict`, *optional*):
|
881 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
882 |
+
`self.processor` in
|
883 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
884 |
+
added_cond_kwargs: (`dict`, *optional*):
|
885 |
+
A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that
|
886 |
+
are passed along to the UNet blocks.
|
887 |
+
down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):
|
888 |
+
A tuple of tensors that if specified are added to the residuals of down unet blocks.
|
889 |
+
mid_block_additional_residual: (`torch.Tensor`, *optional*):
|
890 |
+
A tensor that if specified is added to the residual of the middle unet block.
|
891 |
+
encoder_attention_mask (`torch.Tensor`):
|
892 |
+
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
|
893 |
+
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
|
894 |
+
which adds large negative values to the attention scores corresponding to "discard" tokens.
|
895 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
896 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
897 |
+
tuple.
|
898 |
+
cross_attention_kwargs (`dict`, *optional*):
|
899 |
+
A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
|
900 |
+
added_cond_kwargs: (`dict`, *optional*):
|
901 |
+
A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
|
902 |
+
are passed along to the UNet blocks.
|
903 |
+
|
904 |
+
Returns:
|
905 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
906 |
+
If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
|
907 |
+
a `tuple` is returned where the first element is the sample tensor.
|
908 |
+
"""
|
909 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
910 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
|
911 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
912 |
+
# on the fly if necessary.
|
913 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
914 |
+
|
915 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
916 |
+
forward_upsample_size = False
|
917 |
+
upsample_size = None
|
918 |
+
|
919 |
+
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
|
920 |
+
# Forward upsample size to force interpolation output size.
|
921 |
+
forward_upsample_size = True
|
922 |
+
|
923 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension
|
924 |
+
# expects mask of shape:
|
925 |
+
# [batch, key_tokens]
|
926 |
+
# adds singleton query_tokens dimension:
|
927 |
+
# [batch, 1, key_tokens]
|
928 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
929 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
930 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
931 |
+
if attention_mask is not None:
|
932 |
+
# assume that mask is expressed as:
|
933 |
+
# (1 = keep, 0 = discard)
|
934 |
+
# convert mask into a bias that can be added to attention scores:
|
935 |
+
# (keep = +0, discard = -10000.0)
|
936 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
937 |
+
attention_mask = attention_mask.unsqueeze(1)
|
938 |
+
|
939 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
940 |
+
if encoder_attention_mask is not None:
|
941 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
|
942 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
943 |
+
|
944 |
+
# 0. center input if necessary
|
945 |
+
if self.config.center_input_sample:
|
946 |
+
sample = 2 * sample - 1.0
|
947 |
+
|
948 |
+
# 1. time
|
949 |
+
# timesteps = timestep
|
950 |
+
|
951 |
+
# for timestep in [rgb_timestep, depth_timestep]:
|
952 |
+
rgb_timesteps = rgb_timestep
|
953 |
+
depth_timesteps = depth_timestep
|
954 |
+
# timesteps = timestep
|
955 |
+
if not torch.is_tensor(rgb_timesteps):
|
956 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
957 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
958 |
+
is_mps = sample.device.type == "mps"
|
959 |
+
if isinstance(rgb_timestep, float):
|
960 |
+
dtype = torch.float32 if is_mps else torch.float64
|
961 |
+
else:
|
962 |
+
dtype = torch.int32 if is_mps else torch.int64
|
963 |
+
rgb_timesteps = torch.tensor([rgb_timesteps], dtype=dtype, device=sample.device)
|
964 |
+
elif len(rgb_timesteps.shape) == 0:
|
965 |
+
rgb_timesteps = rgb_timesteps[None].to(sample.device)
|
966 |
+
rgb_timesteps = rgb_timesteps.expand(sample.shape[0])
|
967 |
+
rgb_t_emb = self.time_proj(rgb_timesteps)
|
968 |
+
rgb_t_emb = rgb_t_emb.to(dtype=sample.dtype)
|
969 |
+
rgb_emb = self.time_embedding(rgb_t_emb, timestep_cond)
|
970 |
+
|
971 |
+
if not torch.is_tensor(depth_timesteps):
|
972 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
973 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
974 |
+
is_mps = sample.device.type == "mps"
|
975 |
+
if isinstance(depth_timestep, float):
|
976 |
+
dtype = torch.float32 if is_mps else torch.float64
|
977 |
+
else:
|
978 |
+
dtype = torch.int32 if is_mps else torch.int64
|
979 |
+
depth_timesteps = torch.tensor([depth_timesteps], dtype=dtype, device=sample.device)
|
980 |
+
elif len(depth_timesteps.shape) == 0:
|
981 |
+
depth_timesteps = depth_timesteps[None].to(sample.device)
|
982 |
+
depth_timesteps = depth_timesteps.expand(sample.shape[0])
|
983 |
+
depth_t_emb = self.depth_time_proj(depth_timesteps)
|
984 |
+
depth_t_emb = depth_t_emb.to(dtype=sample.dtype)
|
985 |
+
depth_emb = self.depth_time_embedding(depth_t_emb, timestep_cond)
|
986 |
+
aug_emb = None
|
987 |
+
|
988 |
+
rgb_emb = rgb_emb + aug_emb if aug_emb is not None else rgb_emb
|
989 |
+
depth_emb = depth_emb + aug_emb if aug_emb is not None else depth_emb
|
990 |
+
|
991 |
+
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
|
992 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
|
993 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
|
994 |
+
# Kadinsky 2.1 - style
|
995 |
+
if "image_embeds" not in added_cond_kwargs:
|
996 |
+
raise ValueError(
|
997 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
998 |
+
)
|
999 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1000 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
|
1001 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
|
1002 |
+
# Kandinsky 2.2 - style
|
1003 |
+
if "image_embeds" not in added_cond_kwargs:
|
1004 |
+
raise ValueError(
|
1005 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1006 |
+
)
|
1007 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1008 |
+
encoder_hidden_states = self.encoder_hid_proj(image_embeds)
|
1009 |
+
|
1010 |
+
# 2. pre-process
|
1011 |
+
rgb_sample, depth_sample = sample.chunk(2, dim=1)
|
1012 |
+
depth_sample = self.depth_conv_in(depth_sample)
|
1013 |
+
sample = self.conv_in(rgb_sample)
|
1014 |
+
|
1015 |
+
# 2.5 GLIGEN position net
|
1016 |
+
if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
|
1017 |
+
cross_attention_kwargs = cross_attention_kwargs.copy()
|
1018 |
+
gligen_args = cross_attention_kwargs.pop("gligen")
|
1019 |
+
cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}
|
1020 |
+
|
1021 |
+
# 3. down
|
1022 |
+
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
|
1023 |
+
|
1024 |
+
is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
|
1025 |
+
is_adapter = mid_block_additional_residual is None and down_block_additional_residuals is not None
|
1026 |
+
|
1027 |
+
down_block_res_depth_samples = (depth_sample,)
|
1028 |
+
down_block_res_samples = (sample,)
|
1029 |
+
|
1030 |
+
for block_id, downsample_block in enumerate(self.down_blocks):
|
1031 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
1032 |
+
# For t2i-adapter CrossAttnDownBlock2D
|
1033 |
+
additional_residuals = {}
|
1034 |
+
sample, res_samples = downsample_block(
|
1035 |
+
hidden_states=sample,
|
1036 |
+
temb=rgb_emb,
|
1037 |
+
encoder_hidden_states=encoder_hidden_states,
|
1038 |
+
attention_mask=attention_mask,
|
1039 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1040 |
+
encoder_attention_mask=encoder_attention_mask,
|
1041 |
+
**additional_residuals,
|
1042 |
+
)
|
1043 |
+
|
1044 |
+
# depth_res_samples = res_samples
|
1045 |
+
# if separate_list is not None and block_id < separate_list[0]:
|
1046 |
+
|
1047 |
+
depth_sample, depth_res_samples = self.depth_down_blocks[block_id](
|
1048 |
+
hidden_states=depth_sample,
|
1049 |
+
temb=depth_emb,
|
1050 |
+
encoder_hidden_states=encoder_hidden_states,
|
1051 |
+
attention_mask=attention_mask,
|
1052 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1053 |
+
encoder_attention_mask=encoder_attention_mask,
|
1054 |
+
**additional_residuals,
|
1055 |
+
)
|
1056 |
+
# mean_sample = (depth_sample + sample) / 2
|
1057 |
+
# depth_sample, sample = mean_sample, mean_sample
|
1058 |
+
else:
|
1059 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=rgb_emb, scale=lora_scale)
|
1060 |
+
|
1061 |
+
# depth_res_samples = res_samples
|
1062 |
+
# if separate_list is not None and block_id < separate_list[0]:
|
1063 |
+
if isinstance(self.depth_down_blocks[block_id], torch.nn.Linear):
|
1064 |
+
depth_sample, depth_res_samples = downsample_block(hidden_states=depth_sample, temb=depth_emb, scale=lora_scale)
|
1065 |
+
else:
|
1066 |
+
depth_sample, depth_res_samples = self.depth_down_blocks[block_id](hidden_states=depth_sample, temb=depth_emb, scale=lora_scale)
|
1067 |
+
# mean_sample = (depth_sample + sample) / 2
|
1068 |
+
# depth_sample, sample = mean_sample, mean_sample
|
1069 |
+
|
1070 |
+
if is_adapter and len(down_block_additional_residuals) > 0:
|
1071 |
+
sample += down_block_additional_residuals.pop(0)
|
1072 |
+
|
1073 |
+
down_block_res_samples += res_samples
|
1074 |
+
down_block_res_depth_samples += depth_res_samples
|
1075 |
+
|
1076 |
+
if controlnet_connection:
|
1077 |
+
new_down_block_res_samples = ()
|
1078 |
+
new_down_block_res_depth_samples = ()
|
1079 |
+
for down_block_res_sample, down_block_res_depth_sample, rgb2depth_block, depth2rgb_block in zip(
|
1080 |
+
down_block_res_samples, down_block_res_depth_samples, self.down_rgb2depth, self.down_depth2rgb
|
1081 |
+
):
|
1082 |
+
new_down_block_res_sample = down_block_res_sample + depth2rgb_scale * depth2rgb_block(down_block_res_depth_sample)
|
1083 |
+
new_down_block_res_samples = new_down_block_res_samples + (new_down_block_res_sample,)
|
1084 |
+
|
1085 |
+
new_down_block_res_depth_sample = down_block_res_depth_sample + rgb2depth_scale * rgb2depth_block(down_block_res_sample)
|
1086 |
+
new_down_block_res_depth_samples = new_down_block_res_depth_samples + (new_down_block_res_depth_sample,)
|
1087 |
+
|
1088 |
+
down_block_res_samples = new_down_block_res_samples
|
1089 |
+
down_block_res_depth_samples = new_down_block_res_depth_samples
|
1090 |
+
|
1091 |
+
from diffusers import ControlNetModel
|
1092 |
+
# 4. mid
|
1093 |
+
if self.mid_block is not None:
|
1094 |
+
sample = self.mid_block(
|
1095 |
+
sample,
|
1096 |
+
rgb_emb,
|
1097 |
+
encoder_hidden_states=encoder_hidden_states,
|
1098 |
+
attention_mask=attention_mask,
|
1099 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1100 |
+
encoder_attention_mask=encoder_attention_mask,
|
1101 |
+
)
|
1102 |
+
# if separate_list is not None and len(separate_list[0]) == 3:
|
1103 |
+
|
1104 |
+
depth_sample = self.depth_mid_block(
|
1105 |
+
depth_sample,
|
1106 |
+
depth_emb,
|
1107 |
+
encoder_hidden_states=encoder_hidden_states,
|
1108 |
+
attention_mask=attention_mask,
|
1109 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1110 |
+
encoder_attention_mask=encoder_attention_mask,
|
1111 |
+
)
|
1112 |
+
|
1113 |
+
if controlnet_connection:
|
1114 |
+
new_depth_sample = depth_sample + rgb2depth_scale * self.mid_rgb2depth(sample)
|
1115 |
+
new_image_sample = sample + depth2rgb_scale * self.mid_depth2rgb(depth_sample)
|
1116 |
+
depth_sample = new_depth_sample
|
1117 |
+
sample = new_image_sample
|
1118 |
+
|
1119 |
+
# 5. up
|
1120 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
1121 |
+
rever_block_id = len(self.up_blocks) - i - 1
|
1122 |
+
is_final_block = i == len(self.up_blocks) - 1
|
1123 |
+
|
1124 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
1125 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
1126 |
+
|
1127 |
+
res_depth_samples = down_block_res_depth_samples[-len(upsample_block.resnets):]
|
1128 |
+
down_block_res_depth_samples = down_block_res_depth_samples[: -len(upsample_block.resnets)]
|
1129 |
+
|
1130 |
+
# if we have not reached the final block and need to forward the
|
1131 |
+
# upsample size, we do it here
|
1132 |
+
# if separate_list is not None and rever_block_id < separate_list[-1]:
|
1133 |
+
|
1134 |
+
if not is_final_block and forward_upsample_size:
|
1135 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
1136 |
+
|
1137 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
1138 |
+
sample = upsample_block(
|
1139 |
+
hidden_states=sample,
|
1140 |
+
temb=rgb_emb,
|
1141 |
+
res_hidden_states_tuple=res_samples,
|
1142 |
+
encoder_hidden_states=encoder_hidden_states,
|
1143 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1144 |
+
upsample_size=upsample_size,
|
1145 |
+
attention_mask=attention_mask,
|
1146 |
+
encoder_attention_mask=encoder_attention_mask,
|
1147 |
+
)
|
1148 |
+
|
1149 |
+
depth_sample = self.depth_up_blocks[i](
|
1150 |
+
hidden_states=depth_sample,
|
1151 |
+
temb=depth_emb,
|
1152 |
+
res_hidden_states_tuple=res_depth_samples,
|
1153 |
+
encoder_hidden_states=encoder_hidden_states,
|
1154 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1155 |
+
upsample_size=upsample_size,
|
1156 |
+
attention_mask=attention_mask,
|
1157 |
+
encoder_attention_mask=encoder_attention_mask,
|
1158 |
+
)
|
1159 |
+
# mean_sample = (depth_sample + sample) / 2
|
1160 |
+
# depth_sample, sample = mean_sample, mean_sample
|
1161 |
+
else:
|
1162 |
+
sample = upsample_block(
|
1163 |
+
hidden_states=sample,
|
1164 |
+
temb=rgb_emb,
|
1165 |
+
res_hidden_states_tuple=res_samples,
|
1166 |
+
upsample_size=upsample_size,
|
1167 |
+
scale=lora_scale,
|
1168 |
+
)
|
1169 |
+
# if separate_list is not None and rever_block_id < separate_list[-1]:
|
1170 |
+
depth_sample = self.depth_up_blocks[i](
|
1171 |
+
hidden_states=depth_sample,
|
1172 |
+
temb=depth_emb,
|
1173 |
+
res_hidden_states_tuple=res_depth_samples,
|
1174 |
+
upsample_size=upsample_size,
|
1175 |
+
scale=lora_scale,
|
1176 |
+
)
|
1177 |
+
|
1178 |
+
# 6. post-process
|
1179 |
+
if self.conv_norm_out:
|
1180 |
+
sample = self.conv_norm_out(sample)
|
1181 |
+
sample = self.conv_act(sample)
|
1182 |
+
sample = self.conv_out(sample)
|
1183 |
+
|
1184 |
+
if self.conv_norm_out:
|
1185 |
+
depth_sample = self.depth_conv_norm_out(depth_sample)
|
1186 |
+
depth_sample = self.depth_conv_act(depth_sample)
|
1187 |
+
depth_sample = self.depth_conv_out(depth_sample)
|
1188 |
+
sample = torch.cat([sample, depth_sample], dim=1)
|
1189 |
+
|
1190 |
+
if not return_dict:
|
1191 |
+
return (sample,)
|
1192 |
+
|
1193 |
+
return UNet2DConditionOutput(sample=sample)
|
marigold/marigold_inpaint_pipeline.py
ADDED
@@ -0,0 +1,873 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Bingxin Ke, ETH Zurich. All rights reserved.
|
2 |
+
# Last modified: 2024-05-24
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
# --------------------------------------------------------------------------
|
16 |
+
# If you find this code useful, we kindly ask you to cite our paper in your work.
|
17 |
+
# Please find bibtex at: https://github.com/prs-eth/Marigold#-citation
|
18 |
+
# More information about the method can be found at https://marigoldmonodepth.github.io
|
19 |
+
# --------------------------------------------------------------------------
|
20 |
+
|
21 |
+
import logging
|
22 |
+
from diffusers.image_processor import VaeImageProcessor
|
23 |
+
import pdb
|
24 |
+
from typing import Dict, Optional, Union
|
25 |
+
import PIL.Image
|
26 |
+
import numpy as np
|
27 |
+
import torch
|
28 |
+
from diffusers import (
|
29 |
+
AutoencoderKL,
|
30 |
+
DDIMScheduler,
|
31 |
+
DiffusionPipeline,
|
32 |
+
LCMScheduler,
|
33 |
+
PNDMScheduler,
|
34 |
+
UNet2DConditionModel,
|
35 |
+
)
|
36 |
+
from .duplicate_unet import DoubleUNet2DConditionModel
|
37 |
+
from torch.nn import Conv2d
|
38 |
+
from PIL import ImageDraw, ImageFont
|
39 |
+
from torch.nn.parameter import Parameter
|
40 |
+
from diffusers.utils import BaseOutput, make_image_grid
|
41 |
+
from PIL import Image
|
42 |
+
from torch.utils.data import DataLoader, TensorDataset
|
43 |
+
from torchvision.transforms import InterpolationMode
|
44 |
+
from torchvision.transforms.functional import pil_to_tensor, resize
|
45 |
+
from tqdm.auto import tqdm
|
46 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
47 |
+
|
48 |
+
from .util.batchsize import find_batch_size
|
49 |
+
from .util.ensemble import ensemble_depth
|
50 |
+
from .util.image_util import (
|
51 |
+
chw2hwc,
|
52 |
+
colorize_depth_maps,
|
53 |
+
get_tv_resample_method,
|
54 |
+
resize_max_res,
|
55 |
+
)
|
56 |
+
|
57 |
+
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
58 |
+
"""
|
59 |
+
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
60 |
+
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
61 |
+
"""
|
62 |
+
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
63 |
+
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
64 |
+
# rescale the results from guidance (fixes overexposure)
|
65 |
+
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
66 |
+
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
67 |
+
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
68 |
+
return noise_cfg
|
69 |
+
|
70 |
+
class MarigoldDepthOutput(BaseOutput):
|
71 |
+
"""
|
72 |
+
Output class for Marigold monocular depth prediction pipeline.
|
73 |
+
|
74 |
+
Args:
|
75 |
+
depth_np (`np.ndarray`):
|
76 |
+
Predicted depth map, with depth values in the range of [0, 1].
|
77 |
+
depth_colored (`PIL.Image.Image`):
|
78 |
+
Colorized depth map, with the shape of [3, H, W] and values in [0, 1].
|
79 |
+
uncertainty (`None` or `np.ndarray`):
|
80 |
+
Uncalibrated uncertainty(MAD, median absolute deviation) coming from ensembling.
|
81 |
+
"""
|
82 |
+
|
83 |
+
depth_np: np.ndarray
|
84 |
+
depth_colored: Union[None, Image.Image]
|
85 |
+
uncertainty: Union[None, np.ndarray]
|
86 |
+
|
87 |
+
class MarigoldInpaintPipeline(DiffusionPipeline):
|
88 |
+
"""
|
89 |
+
Pipeline for monocular depth estimation using Marigold: https://marigoldmonodepth.github.io.
|
90 |
+
|
91 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
92 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
93 |
+
|
94 |
+
Args:
|
95 |
+
unet (`UNet2DConditionModel`):
|
96 |
+
Conditional U-Net to denoise the depth latent, conditioned on image latent.
|
97 |
+
vae (`AutoencoderKL`):
|
98 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images and depth maps
|
99 |
+
to and from latent representations.
|
100 |
+
scheduler (`DDIMScheduler`):
|
101 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents.
|
102 |
+
text_encoder (`CLIPTextModel`):
|
103 |
+
Text-encoder, for empty text embedding.
|
104 |
+
tokenizer (`CLIPTokenizer`):
|
105 |
+
CLIP tokenizer.
|
106 |
+
scale_invariant (`bool`, *optional*):
|
107 |
+
A model property specifying whether the predicted depth maps are scale-invariant. This value must be set in
|
108 |
+
the model config. When used together with the `shift_invariant=True` flag, the model is also called
|
109 |
+
"affine-invariant". NB: overriding this value is not supported.
|
110 |
+
shift_invariant (`bool`, *optional*):
|
111 |
+
A model property specifying whether the predicted depth maps are shift-invariant. This value must be set in
|
112 |
+
the model config. When used together with the `scale_invariant=True` flag, the model is also called
|
113 |
+
"affine-invariant". NB: overriding this value is not supported.
|
114 |
+
default_denoising_steps (`int`, *optional*):
|
115 |
+
The minimum number of denoising diffusion steps that are required to produce a prediction of reasonable
|
116 |
+
quality with the given model. This value must be set in the model config. When the pipeline is called
|
117 |
+
without explicitly setting `num_inference_steps`, the default value is used. This is required to ensure
|
118 |
+
reasonable results with various model flavors compatible with the pipeline, such as those relying on very
|
119 |
+
short denoising schedules (`LCMScheduler`) and those with full diffusion schedules (`DDIMScheduler`).
|
120 |
+
default_processing_resolution (`int`, *optional*):
|
121 |
+
The recommended value of the `processing_resolution` parameter of the pipeline. This value must be set in
|
122 |
+
the model config. When the pipeline is called without explicitly setting `processing_resolution`, the
|
123 |
+
default value is used. This is required to ensure reasonable results with various model flavors trained
|
124 |
+
with varying optimal processing resolution values.
|
125 |
+
"""
|
126 |
+
|
127 |
+
rgb_latent_scale_factor = 0.18215
|
128 |
+
depth_latent_scale_factor = 0.18215
|
129 |
+
|
130 |
+
def __init__(
|
131 |
+
self,
|
132 |
+
unet: DoubleUNet2DConditionModel,
|
133 |
+
vae: AutoencoderKL,
|
134 |
+
scheduler: Union[DDIMScheduler, LCMScheduler],
|
135 |
+
text_encoder: CLIPTextModel,
|
136 |
+
tokenizer: CLIPTokenizer,
|
137 |
+
scale_invariant: Optional[bool] = True,
|
138 |
+
shift_invariant: Optional[bool] = True,
|
139 |
+
default_denoising_steps: Optional[int] = None,
|
140 |
+
default_processing_resolution: Optional[int] = None,
|
141 |
+
requires_safety_checker: bool = False,
|
142 |
+
):
|
143 |
+
super().__init__()
|
144 |
+
|
145 |
+
self.register_modules(
|
146 |
+
unet=unet,
|
147 |
+
vae=vae,
|
148 |
+
scheduler=scheduler,
|
149 |
+
text_encoder=text_encoder,
|
150 |
+
tokenizer=tokenizer,
|
151 |
+
)
|
152 |
+
self.register_to_config(
|
153 |
+
scale_invariant=scale_invariant,
|
154 |
+
shift_invariant=shift_invariant,
|
155 |
+
default_denoising_steps=default_denoising_steps,
|
156 |
+
default_processing_resolution=default_processing_resolution,
|
157 |
+
)
|
158 |
+
|
159 |
+
self.scale_invariant = scale_invariant
|
160 |
+
self.shift_invariant = shift_invariant
|
161 |
+
self.default_denoising_steps = default_denoising_steps
|
162 |
+
self.default_processing_resolution = default_processing_resolution
|
163 |
+
self.rgb_scheduler = None
|
164 |
+
self.depth_scheduler = None
|
165 |
+
|
166 |
+
self.empty_text_embed = None
|
167 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
168 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
169 |
+
self.mask_processor = VaeImageProcessor(
|
170 |
+
vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True
|
171 |
+
)
|
172 |
+
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
173 |
+
self.separate_list = [0,0]
|
174 |
+
|
175 |
+
@torch.no_grad()
|
176 |
+
def __call__(
|
177 |
+
self,
|
178 |
+
input_image: Union[Image.Image, torch.Tensor],
|
179 |
+
denoising_steps: Optional[int] = None,
|
180 |
+
ensemble_size: int = 5,
|
181 |
+
processing_res: Optional[int] = None,
|
182 |
+
match_input_res: bool = True,
|
183 |
+
resample_method: str = "bilinear",
|
184 |
+
batch_size: int = 0,
|
185 |
+
generator: Union[torch.Generator, None] = None,
|
186 |
+
color_map: str = "Spectral",
|
187 |
+
show_progress_bar: bool = True,
|
188 |
+
ensemble_kwargs: Dict = None,
|
189 |
+
) -> MarigoldDepthOutput:
|
190 |
+
"""
|
191 |
+
Function invoked when calling the pipeline.
|
192 |
+
|
193 |
+
Args:
|
194 |
+
input_image (`Image`):
|
195 |
+
Input RGB (or gray-scale) image.
|
196 |
+
denoising_steps (`int`, *optional*, defaults to `None`):
|
197 |
+
Number of denoising diffusion steps during inference. The default value `None` results in automatic
|
198 |
+
selection. The number of steps should be at least 10 with the full Marigold models, and between 1 and 4
|
199 |
+
for Marigold-LCM models.
|
200 |
+
ensemble_size (`int`, *optional*, defaults to `10`):
|
201 |
+
Number of predictions to be ensembled.
|
202 |
+
processing_res (`int`, *optional*, defaults to `None`):
|
203 |
+
Effective processing resolution. When set to `0`, processes at the original image resolution. This
|
204 |
+
produces crisper predictions, but may also lead to the overall loss of global context. The default
|
205 |
+
value `None` resolves to the optimal value from the model config.
|
206 |
+
match_input_res (`bool`, *optional*, defaults to `True`):
|
207 |
+
Resize depth prediction to match input resolution.
|
208 |
+
Only valid if `processing_res` > 0.
|
209 |
+
resample_method: (`str`, *optional*, defaults to `bilinear`):
|
210 |
+
Resampling method used to resize images and depth predictions. This can be one of `bilinear`, `bicubic` or `nearest`, defaults to: `bilinear`.
|
211 |
+
batch_size (`int`, *optional*, defaults to `0`):
|
212 |
+
Inference batch size, no bigger than `num_ensemble`.
|
213 |
+
If set to 0, the script will automatically decide the proper batch size.
|
214 |
+
generator (`torch.Generator`, *optional*, defaults to `None`)
|
215 |
+
Random generator for initial noise generation.
|
216 |
+
show_progress_bar (`bool`, *optional*, defaults to `True`):
|
217 |
+
Display a progress bar of diffusion denoising.
|
218 |
+
color_map (`str`, *optional*, defaults to `"Spectral"`, pass `None` to skip colorized depth map generation):
|
219 |
+
Colormap used to colorize the depth map.
|
220 |
+
scale_invariant (`str`, *optional*, defaults to `True`):
|
221 |
+
Flag of scale-invariant prediction, if True, scale will be adjusted from the raw prediction.
|
222 |
+
shift_invariant (`str`, *optional*, defaults to `True`):
|
223 |
+
Flag of shift-invariant prediction, if True, shift will be adjusted from the raw prediction, if False, near plane will be fixed at 0m.
|
224 |
+
ensemble_kwargs (`dict`, *optional*, defaults to `None`):
|
225 |
+
Arguments for detailed ensembling settings.
|
226 |
+
Returns:
|
227 |
+
`MarigoldDepthOutput`: Output class for Marigold monocular depth prediction pipeline, including:
|
228 |
+
- **depth_np** (`np.ndarray`) Predicted depth map, with depth values in the range of [0, 1]
|
229 |
+
- **depth_colored** (`PIL.Image.Image`) Colorized depth map, with the shape of [3, H, W] and values in [0, 1], None if `color_map` is `None`
|
230 |
+
- **uncertainty** (`None` or `np.ndarray`) Uncalibrated uncertainty(MAD, median absolute deviation)
|
231 |
+
coming from ensembling. None if `ensemble_size = 1`
|
232 |
+
"""
|
233 |
+
# Model-specific optimal default values leading to fast and reasonable results.
|
234 |
+
if denoising_steps is None:
|
235 |
+
denoising_steps = self.default_denoising_steps
|
236 |
+
if processing_res is None:
|
237 |
+
processing_res = self.default_processing_resolution
|
238 |
+
|
239 |
+
assert processing_res >= 0
|
240 |
+
assert ensemble_size >= 1
|
241 |
+
|
242 |
+
# Check if denoising step is reasonable
|
243 |
+
self._check_inference_step(denoising_steps)
|
244 |
+
|
245 |
+
resample_method: InterpolationMode = get_tv_resample_method(resample_method)
|
246 |
+
|
247 |
+
# ----------------- Image Preprocess -----------------
|
248 |
+
# Convert to torch tensor
|
249 |
+
if isinstance(input_image, Image.Image):
|
250 |
+
input_image = input_image.convert("RGB")
|
251 |
+
# convert to torch tensor [H, W, rgb] -> [rgb, H, W]
|
252 |
+
rgb = pil_to_tensor(input_image)
|
253 |
+
rgb = rgb.unsqueeze(0) # [1, rgb, H, W]
|
254 |
+
elif isinstance(input_image, torch.Tensor):
|
255 |
+
rgb = input_image
|
256 |
+
else:
|
257 |
+
raise TypeError(f"Unknown input type: {type(input_image) = }")
|
258 |
+
input_size = rgb.shape
|
259 |
+
assert (
|
260 |
+
4 == rgb.dim() and 3 == input_size[-3]
|
261 |
+
), f"Wrong input shape {input_size}, expected [1, rgb, H, W]"
|
262 |
+
|
263 |
+
# Resize image
|
264 |
+
if processing_res > 0:
|
265 |
+
rgb = resize_max_res(
|
266 |
+
rgb,
|
267 |
+
max_edge_resolution=processing_res,
|
268 |
+
resample_method=resample_method,
|
269 |
+
)
|
270 |
+
|
271 |
+
# Normalize rgb values
|
272 |
+
rgb_norm: torch.Tensor = rgb / 255.0 * 2.0 - 1.0 # [0, 255] -> [-1, 1]
|
273 |
+
rgb_norm = rgb_norm.to(self.dtype)
|
274 |
+
assert rgb_norm.min() >= -1.0 and rgb_norm.max() <= 1.0
|
275 |
+
|
276 |
+
# ----------------- Predicting depth -----------------
|
277 |
+
# Batch repeated input image
|
278 |
+
duplicated_rgb = rgb_norm.expand(ensemble_size, -1, -1, -1)
|
279 |
+
single_rgb_dataset = TensorDataset(duplicated_rgb)
|
280 |
+
if batch_size > 0:
|
281 |
+
_bs = batch_size
|
282 |
+
else:
|
283 |
+
_bs = find_batch_size(
|
284 |
+
ensemble_size=ensemble_size,
|
285 |
+
input_res=max(rgb_norm.shape[1:]),
|
286 |
+
dtype=self.dtype,
|
287 |
+
)
|
288 |
+
|
289 |
+
single_rgb_loader = DataLoader(
|
290 |
+
single_rgb_dataset, batch_size=_bs, shuffle=False
|
291 |
+
)
|
292 |
+
|
293 |
+
# Predict depth maps (batched)
|
294 |
+
depth_pred_ls = []
|
295 |
+
if show_progress_bar:
|
296 |
+
iterable = tqdm(
|
297 |
+
single_rgb_loader, desc=" " * 2 + "Inference batches", leave=False
|
298 |
+
)
|
299 |
+
else:
|
300 |
+
iterable = single_rgb_loader
|
301 |
+
for batch in iterable:
|
302 |
+
(batched_img,) = batch
|
303 |
+
depth_pred_raw = self.single_infer(
|
304 |
+
rgb_in=batched_img,
|
305 |
+
num_inference_steps=denoising_steps,
|
306 |
+
show_pbar=show_progress_bar,
|
307 |
+
generator=generator,
|
308 |
+
)
|
309 |
+
depth_pred_ls.append(depth_pred_raw.detach())
|
310 |
+
depth_preds = torch.concat(depth_pred_ls, dim=0)
|
311 |
+
torch.cuda.empty_cache() # clear vram cache for ensembling
|
312 |
+
|
313 |
+
# ----------------- Test-time ensembling -----------------
|
314 |
+
if ensemble_size > 1:
|
315 |
+
depth_pred, pred_uncert = ensemble_depth(
|
316 |
+
depth_preds,
|
317 |
+
scale_invariant=self.scale_invariant,
|
318 |
+
shift_invariant=self.shift_invariant,
|
319 |
+
max_res=50,
|
320 |
+
**(ensemble_kwargs or {}),
|
321 |
+
)
|
322 |
+
else:
|
323 |
+
depth_pred = depth_preds
|
324 |
+
pred_uncert = None
|
325 |
+
|
326 |
+
# Resize back to original resolution
|
327 |
+
if match_input_res:
|
328 |
+
depth_pred = resize(
|
329 |
+
depth_pred,
|
330 |
+
input_size[-2:],
|
331 |
+
interpolation=resample_method,
|
332 |
+
antialias=True,
|
333 |
+
)
|
334 |
+
|
335 |
+
# Convert to numpy
|
336 |
+
depth_pred = depth_pred.squeeze()
|
337 |
+
depth_pred = depth_pred.cpu().numpy()
|
338 |
+
if pred_uncert is not None:
|
339 |
+
pred_uncert = pred_uncert.squeeze().cpu().numpy()
|
340 |
+
|
341 |
+
# Clip output range
|
342 |
+
depth_pred = depth_pred.clip(0, 1)
|
343 |
+
|
344 |
+
# Colorize
|
345 |
+
if color_map is not None:
|
346 |
+
depth_colored = colorize_depth_maps(
|
347 |
+
depth_pred, 0, 1, cmap=color_map
|
348 |
+
).squeeze() # [3, H, W], value in (0, 1)
|
349 |
+
depth_colored = (depth_colored * 255).astype(np.uint8)
|
350 |
+
depth_colored_hwc = chw2hwc(depth_colored)
|
351 |
+
depth_colored_img = Image.fromarray(depth_colored_hwc)
|
352 |
+
else:
|
353 |
+
depth_colored_img = None
|
354 |
+
|
355 |
+
return MarigoldDepthOutput(
|
356 |
+
depth_np=depth_pred,
|
357 |
+
depth_colored=depth_colored_img,
|
358 |
+
uncertainty=pred_uncert,
|
359 |
+
)
|
360 |
+
|
361 |
+
def _replace_unet_conv_in(self):
|
362 |
+
# replace the first layer to accept 8 in_channels
|
363 |
+
_weight = self.unet.conv_in.weight.clone() # [320, 4, 3, 3]
|
364 |
+
_bias = self.unet.conv_in.bias.clone() # [320]
|
365 |
+
zero_weight = torch.zeros(_weight.shape).to(_weight.device)
|
366 |
+
_weight = torch.cat([_weight, zero_weight], dim=1)
|
367 |
+
# _weight = _weight.repeat((1, 2, 1, 1)) # Keep selected channel(s)
|
368 |
+
# half the activation magnitude
|
369 |
+
# _weight *= 0.5
|
370 |
+
# new conv_in channel
|
371 |
+
_n_convin_out_channel = self.unet.conv_in.out_channels
|
372 |
+
_new_conv_in = Conv2d(
|
373 |
+
8, _n_convin_out_channel, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
|
374 |
+
)
|
375 |
+
_new_conv_in.weight = Parameter(_weight)
|
376 |
+
_new_conv_in.bias = Parameter(_bias)
|
377 |
+
self.unet.conv_in = _new_conv_in
|
378 |
+
logging.info("Unet conv_in layer is replaced")
|
379 |
+
# replace config
|
380 |
+
self.unet.config["in_channels"] = 8
|
381 |
+
logging.info("Unet config is updated")
|
382 |
+
return
|
383 |
+
|
384 |
+
def _replace_unet_conv_out(self):
|
385 |
+
# replace the first layer to accept 8 in_channels
|
386 |
+
_weight = self.unet.conv_out.weight.clone() # [8, 320, 3, 3]
|
387 |
+
_bias = self.unet.conv_out.bias.clone() # [320]
|
388 |
+
_weight = _weight.repeat((2, 1, 1, 1)) # Keep selected channel(s)
|
389 |
+
_bias = _bias.repeat((2))
|
390 |
+
# half the activation magnitude
|
391 |
+
|
392 |
+
# new conv_in channel
|
393 |
+
_n_convin_out_channel = self.unet.conv_out.out_channels
|
394 |
+
_new_conv_out = Conv2d(
|
395 |
+
_n_convin_out_channel, 8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
|
396 |
+
)
|
397 |
+
_new_conv_out.weight = Parameter(_weight)
|
398 |
+
_new_conv_out.bias = Parameter(_bias)
|
399 |
+
self.unet.conv_out = _new_conv_out
|
400 |
+
logging.info("Unet conv_out layer is replaced")
|
401 |
+
# replace config
|
402 |
+
self.unet.config["out_channels"] = 8
|
403 |
+
logging.info("Unet config is updated")
|
404 |
+
return
|
405 |
+
|
406 |
+
def _check_inference_step(self, n_step: int) -> None:
|
407 |
+
"""
|
408 |
+
Check if denoising step is reasonable
|
409 |
+
Args:
|
410 |
+
n_step (`int`): denoising steps
|
411 |
+
"""
|
412 |
+
assert n_step >= 1
|
413 |
+
|
414 |
+
if isinstance(self.scheduler, DDIMScheduler):
|
415 |
+
if n_step < 10:
|
416 |
+
logging.warning(
|
417 |
+
f"Too few denoising steps: {n_step}. Recommended to use the LCM checkpoint for few-step inference."
|
418 |
+
)
|
419 |
+
elif isinstance(self.scheduler, LCMScheduler):
|
420 |
+
if not 1 <= n_step <= 4:
|
421 |
+
logging.warning(
|
422 |
+
f"Non-optimal setting of denoising steps: {n_step}. Recommended setting is 1-4 steps."
|
423 |
+
)
|
424 |
+
elif isinstance(self.scheduler, PNDMScheduler):
|
425 |
+
if n_step < 10:
|
426 |
+
logging.warning(
|
427 |
+
f"Too few denoising steps: {n_step}. Recommended to use the LCM checkpoint for few-step inference."
|
428 |
+
)
|
429 |
+
else:
|
430 |
+
raise RuntimeError(f"Unsupported scheduler type: {type(self.scheduler)}")
|
431 |
+
|
432 |
+
def encode_empty_text(self):
|
433 |
+
"""
|
434 |
+
Encode text embedding for empty prompt
|
435 |
+
"""
|
436 |
+
prompt = ""
|
437 |
+
text_inputs = self.tokenizer(
|
438 |
+
prompt,
|
439 |
+
padding="max_length",
|
440 |
+
max_length=self.tokenizer.model_max_length,
|
441 |
+
truncation=True,
|
442 |
+
return_tensors="pt",
|
443 |
+
)
|
444 |
+
text_input_ids = text_inputs.input_ids.to(self.text_encoder.device)
|
445 |
+
self.empty_text_embed = self.text_encoder(text_input_ids)[0].to(self.dtype)
|
446 |
+
|
447 |
+
def encode_text(self, prompt):
|
448 |
+
"""
|
449 |
+
Encode text embedding for empty prompt
|
450 |
+
"""
|
451 |
+
text_inputs = self.tokenizer(
|
452 |
+
prompt,
|
453 |
+
padding="max_length",
|
454 |
+
max_length=self.tokenizer.model_max_length,
|
455 |
+
truncation=True,
|
456 |
+
return_tensors="pt",
|
457 |
+
)
|
458 |
+
text_input_ids = text_inputs.input_ids.to(self.text_encoder.device)
|
459 |
+
text_embed = self.text_encoder(text_input_ids)[0].to(self.dtype)
|
460 |
+
return text_embed
|
461 |
+
|
462 |
+
def numpy_to_pil(self, images: np.ndarray) -> PIL.Image.Image:
|
463 |
+
"""
|
464 |
+
Convert a numpy image or a batch of images to a PIL image.
|
465 |
+
"""
|
466 |
+
if images.ndim == 3:
|
467 |
+
images = images[None, ...]
|
468 |
+
images = (images * 255).round().astype("uint8")
|
469 |
+
if images.shape[-1] == 1:
|
470 |
+
# special case for grayscale (single channel) images
|
471 |
+
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
|
472 |
+
else:
|
473 |
+
pil_images = [Image.fromarray(image) for image in images]
|
474 |
+
|
475 |
+
return pil_images
|
476 |
+
|
477 |
+
def full_depth_rgb_inpaint(self,
|
478 |
+
rgb_in,
|
479 |
+
depth_in,
|
480 |
+
image_mask,
|
481 |
+
text_embed,
|
482 |
+
timesteps,
|
483 |
+
generator,
|
484 |
+
guidance_scale,
|
485 |
+
):
|
486 |
+
depth_latent = self.encode_depth(depth_in)
|
487 |
+
depth_mask = torch.zeros_like(image_mask)
|
488 |
+
depth_mask_latent = self.encode_depth(depth_in)
|
489 |
+
|
490 |
+
rgb_latent = torch.randn(
|
491 |
+
depth_latent.shape,
|
492 |
+
device=self.device,
|
493 |
+
dtype=self.unet.dtype,
|
494 |
+
generator=generator,
|
495 |
+
) * self.rgb_scheduler.init_noise_sigma
|
496 |
+
rgb_mask = image_mask
|
497 |
+
rgb_mask_latent = self.encode_rgb(rgb_in * (image_mask.squeeze() < 0.5), generator=generator)
|
498 |
+
|
499 |
+
rgb_mask = torch.nn.functional.interpolate(rgb_mask, size=rgb_latent.shape[-2:])
|
500 |
+
depth_mask = torch.nn.functional.interpolate(depth_mask, size=rgb_latent.shape[-2:])
|
501 |
+
|
502 |
+
for i, t in enumerate(timesteps):
|
503 |
+
cat_latent = torch.cat(
|
504 |
+
[rgb_latent, rgb_mask, rgb_mask_latent, depth_mask_latent, depth_latent, depth_mask, rgb_mask_latent,
|
505 |
+
depth_mask_latent], dim=1
|
506 |
+
).float() # [B, 9*2, h, w]
|
507 |
+
|
508 |
+
latent_model_input = torch.cat([cat_latent] * 2)
|
509 |
+
|
510 |
+
# predict the noise residual
|
511 |
+
with torch.no_grad():
|
512 |
+
partial_noise_pred = self.unet(
|
513 |
+
latent_model_input,
|
514 |
+
rgb_timestep=t,
|
515 |
+
depth_timestep=t,
|
516 |
+
encoder_hidden_states=text_embed,
|
517 |
+
return_dict=False,
|
518 |
+
depth2rgb_scale=0.2
|
519 |
+
)[0]
|
520 |
+
noise_pred = self.unet(
|
521 |
+
latent_model_input,
|
522 |
+
rgb_timestep=t,
|
523 |
+
depth_timestep=t,
|
524 |
+
encoder_hidden_states=text_embed,
|
525 |
+
return_dict=False,
|
526 |
+
# separate_list=self.separate_list
|
527 |
+
)[0]
|
528 |
+
# perform guidance
|
529 |
+
rgb_pred_wo_depth_text = partial_noise_pred[0, :4, :, :]
|
530 |
+
rgb_pred_wo_text = noise_pred[0, :4, :, :]
|
531 |
+
rgb_pred = noise_pred[1, :4, :, :]
|
532 |
+
noise_pred = rgb_pred_wo_depth_text + 2 * (rgb_pred_wo_text - rgb_pred_wo_depth_text) + 3 * (rgb_pred - rgb_pred_wo_text)
|
533 |
+
|
534 |
+
# compute the previous noisy sample x_t -> x_t-1
|
535 |
+
rgb_latent = self.rgb_scheduler.step(noise_pred, t, rgb_latent).prev_sample
|
536 |
+
return rgb_latent, depth_latent
|
537 |
+
|
538 |
+
def full_rgb_depth_inpaint(self,
|
539 |
+
rgb_in,
|
540 |
+
depth_in,
|
541 |
+
image_mask,
|
542 |
+
text_embed,
|
543 |
+
timesteps,
|
544 |
+
generator,
|
545 |
+
guidance_scale
|
546 |
+
):
|
547 |
+
rgb_latent = self.encode_rgb(rgb_in)
|
548 |
+
rgb_mask = torch.zeros_like(image_mask)
|
549 |
+
rgb_mask_latent = self.encode_rgb(rgb_in)
|
550 |
+
|
551 |
+
depth_latent = torch.randn(
|
552 |
+
rgb_latent.shape,
|
553 |
+
device=self.device,
|
554 |
+
dtype=self.unet.dtype,
|
555 |
+
generator=generator,
|
556 |
+
) * self.depth_scheduler.init_noise_sigma
|
557 |
+
depth_mask = image_mask
|
558 |
+
depth_mask_latent = self.encode_depth(depth_in * (image_mask.squeeze() < 0.5))
|
559 |
+
|
560 |
+
rgb_mask = torch.nn.functional.interpolate(rgb_mask, size=rgb_latent.shape[-2:])
|
561 |
+
depth_mask = torch.nn.functional.interpolate(depth_mask, size=rgb_latent.shape[-2:])
|
562 |
+
|
563 |
+
for i, t in enumerate(timesteps):
|
564 |
+
cat_latent = torch.cat(
|
565 |
+
[rgb_latent, rgb_mask, rgb_mask_latent, depth_mask_latent, depth_latent, depth_mask, rgb_mask_latent,
|
566 |
+
depth_mask_latent], dim=1
|
567 |
+
).float() # [B, 9*2, h, w]
|
568 |
+
|
569 |
+
latent_model_input = torch.cat([cat_latent] * 2)
|
570 |
+
|
571 |
+
# predict the noise residual
|
572 |
+
with torch.no_grad():
|
573 |
+
partial_noise_pred = self.unet(
|
574 |
+
latent_model_input,
|
575 |
+
rgb_timestep=t,
|
576 |
+
depth_timestep=t,
|
577 |
+
encoder_hidden_states=text_embed,
|
578 |
+
return_dict=False,
|
579 |
+
rgb2depth_scale=0.2
|
580 |
+
)[0]
|
581 |
+
noise_pred = self.unet(
|
582 |
+
latent_model_input,
|
583 |
+
rgb_timestep=t,
|
584 |
+
depth_timestep=t,
|
585 |
+
encoder_hidden_states=text_embed,
|
586 |
+
return_dict=False,
|
587 |
+
# separate_list=self.separate_list
|
588 |
+
)[0]
|
589 |
+
# compute the previous noisy sample x_t -> x_t-1
|
590 |
+
depth_pre_wo_rgb = partial_noise_pred[1, 4:, :, :]
|
591 |
+
|
592 |
+
depth_pre = depth_pre_wo_rgb + 4 * (noise_pred[1, 4:, :, :] - depth_pre_wo_rgb)
|
593 |
+
|
594 |
+
depth_latent = self.depth_scheduler.step(depth_pre, t, depth_latent, generator=generator).prev_sample
|
595 |
+
return rgb_latent, depth_latent
|
596 |
+
|
597 |
+
def joint_inpaint(self,
|
598 |
+
rgb_in,
|
599 |
+
depth_in,
|
600 |
+
image_mask,
|
601 |
+
text_embed,
|
602 |
+
timesteps,
|
603 |
+
generator,
|
604 |
+
guidance_scale
|
605 |
+
):
|
606 |
+
bs = rgb_in.shape[0]
|
607 |
+
h, w = int(rgb_in.shape[-2]/8), int(rgb_in.shape[-1]/8)
|
608 |
+
rgb_latent = torch.randn(
|
609 |
+
[bs, 4, h, w],
|
610 |
+
device=self.device,
|
611 |
+
dtype=self.unet.dtype,
|
612 |
+
generator=generator,
|
613 |
+
) * self.rgb_scheduler.init_noise_sigma
|
614 |
+
rgb_mask = image_mask
|
615 |
+
rgb_mask_latent = self.encode_rgb(rgb_in * (rgb_mask.squeeze() < 0.5), generator=generator)
|
616 |
+
|
617 |
+
depth_latent = torch.randn(
|
618 |
+
[bs, 4, h, w],
|
619 |
+
device=self.device,
|
620 |
+
dtype=self.unet.dtype,
|
621 |
+
generator=generator,
|
622 |
+
) * self.depth_scheduler.init_noise_sigma
|
623 |
+
depth_mask = image_mask
|
624 |
+
depth_mask_latent = self.encode_depth(depth_in * (image_mask.squeeze() < 0.5))
|
625 |
+
|
626 |
+
rgb_mask = torch.nn.functional.interpolate(rgb_mask, size=rgb_latent.shape[-2:])
|
627 |
+
depth_mask = torch.nn.functional.interpolate(depth_mask, size=rgb_latent.shape[-2:])
|
628 |
+
|
629 |
+
for i, t in enumerate(timesteps):
|
630 |
+
cat_latent = torch.cat(
|
631 |
+
[rgb_latent, rgb_mask, rgb_mask_latent, depth_mask_latent, depth_latent, depth_mask, rgb_mask_latent, depth_mask_latent], dim=1
|
632 |
+
).float() # [B, 9*2, h, w]
|
633 |
+
|
634 |
+
latent_model_input = torch.cat([cat_latent] * 2)
|
635 |
+
# predict the noise residual
|
636 |
+
with torch.no_grad():
|
637 |
+
partial_noise_pred = self.unet(
|
638 |
+
latent_model_input,
|
639 |
+
rgb_timestep=t,
|
640 |
+
depth_timestep=t,
|
641 |
+
encoder_hidden_states=text_embed,
|
642 |
+
return_dict=False,
|
643 |
+
depth2rgb_scale=0,
|
644 |
+
rgb2depth_scale=0.2
|
645 |
+
)[0]
|
646 |
+
noise_pred = self.unet(
|
647 |
+
latent_model_input,
|
648 |
+
rgb_timestep=t,
|
649 |
+
depth_timestep=t,
|
650 |
+
encoder_hidden_states=text_embed,
|
651 |
+
return_dict=False,
|
652 |
+
)[0]
|
653 |
+
|
654 |
+
# perform guidance
|
655 |
+
noise_pred_untext_undual, noise_pred_undual = partial_noise_pred.chunk(2)
|
656 |
+
noise_pred_untext, noise_pred_cond = noise_pred.chunk(2)
|
657 |
+
|
658 |
+
# noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
659 |
+
depth_noise_pred = noise_pred_undual + 3 * (noise_pred_cond - noise_pred_undual)
|
660 |
+
|
661 |
+
rgb_latent = self.rgb_scheduler.step(noise_pred_cond[:, :4, :, :], t, rgb_latent, return_dict=False)[0]
|
662 |
+
depth_latent = self.depth_scheduler.step(depth_noise_pred[:, 4:, :, :], t, depth_latent, generator=generator, return_dict=False)[0]
|
663 |
+
return rgb_latent, depth_latent
|
664 |
+
|
665 |
+
@torch.no_grad()
|
666 |
+
def _rgbd_inpaint(self,
|
667 |
+
input_image: [torch.Tensor, PIL.Image.Image],
|
668 |
+
depth_image: [torch.Tensor, PIL.Image.Image],
|
669 |
+
mask: [torch.Tensor, PIL.Image.Image],
|
670 |
+
prompt: str = '',
|
671 |
+
guidance_scale: float = 4.5,
|
672 |
+
generator: Union[torch.Generator, None] = None,
|
673 |
+
num_inference_steps: int = 50,
|
674 |
+
resample_method: str = "bilinear",
|
675 |
+
processing_res: int = 512,
|
676 |
+
mode: str = 'full_depth_rgb_inpaint'
|
677 |
+
) -> PIL.Image:
|
678 |
+
self._check_inference_step(num_inference_steps)
|
679 |
+
|
680 |
+
resample_method: InterpolationMode = get_tv_resample_method(resample_method)
|
681 |
+
|
682 |
+
# ----------------- encoder prompt -----------------
|
683 |
+
if isinstance(prompt, list):
|
684 |
+
bs = len(prompt)
|
685 |
+
batch_text_embed = []
|
686 |
+
for p in prompt:
|
687 |
+
batch_text_embed.append(self.encode_text(p))
|
688 |
+
batch_text_embed = torch.cat(batch_text_embed, dim=0)
|
689 |
+
elif isinstance(prompt, str):
|
690 |
+
bs = 1
|
691 |
+
batch_text_embed = self.encode_text(prompt).unsqueeze(0)
|
692 |
+
else:
|
693 |
+
raise NotImplementedError
|
694 |
+
|
695 |
+
if self.empty_text_embed is None:
|
696 |
+
self.encode_empty_text()
|
697 |
+
batch_empty_text_embed = self.empty_text_embed.repeat(
|
698 |
+
(batch_text_embed.shape[0], 1, 1)
|
699 |
+
).to(self.device) # [B, 2, 1024]
|
700 |
+
text_embed = torch.cat([batch_empty_text_embed, batch_text_embed], dim=0)
|
701 |
+
|
702 |
+
# ----------------- Image Preprocess -----------------
|
703 |
+
# Convert to torch tensor
|
704 |
+
if isinstance(input_image, Image.Image):
|
705 |
+
rgb_in = self.image_processor.preprocess(input_image, height=processing_res,
|
706 |
+
width=processing_res).to(self.dtype).to(self.device)
|
707 |
+
elif isinstance(input_image, torch.Tensor):
|
708 |
+
rgb = input_image.unsqueeze(0)
|
709 |
+
input_size = rgb.shape
|
710 |
+
assert (
|
711 |
+
4 == rgb.dim() and 3 == input_size[-3]
|
712 |
+
), f"Wrong input shape {input_size}, expected [1, rgb, H, W]"
|
713 |
+
if processing_res > 0:
|
714 |
+
rgb = resize(rgb, [processing_res, processing_res], resample_method, antialias=True)
|
715 |
+
rgb_norm: torch.Tensor = rgb / 255.0 * 2.0 - 1.0 # [0, 255] -> [-1, 1]
|
716 |
+
rgb_in = rgb_norm.to(self.dtype).to(self.device)
|
717 |
+
assert rgb_norm.min() >= -1.0 and rgb_norm.max() <= 1.0
|
718 |
+
|
719 |
+
if isinstance(depth_image, Image.Image):
|
720 |
+
depth = pil_to_tensor(depth_image)
|
721 |
+
depth = depth.unsqueeze(0) # [1, rgb, H, W]
|
722 |
+
elif isinstance(depth_image, torch.Tensor):
|
723 |
+
if len(depth_image.shape) == 3:
|
724 |
+
depth = depth_image.unsqueeze(0)
|
725 |
+
else:
|
726 |
+
depth = depth_image
|
727 |
+
# pdb.set_trace()
|
728 |
+
depth = depth.repeat(1, 3, 1, 1)
|
729 |
+
input_size = depth.shape
|
730 |
+
assert (
|
731 |
+
4 == depth.dim() and 3 == input_size[-3]
|
732 |
+
), f"Wrong input shape {input_size}, expected [1, 1, H, W]"
|
733 |
+
if processing_res > 0:
|
734 |
+
depth = resize(depth, [processing_res, processing_res], resample_method, antialias=True)
|
735 |
+
depth_norm: torch.Tensor = (depth - depth.min()) / (
|
736 |
+
depth.max() - depth.min()) * 2.0 - 1.0 # [0, 255] -> [-1, 1]
|
737 |
+
depth_in = depth_norm.to(self.dtype).to(self.device)
|
738 |
+
assert depth_norm.min() >= -1.0 and depth_norm.max() <= 1.0
|
739 |
+
|
740 |
+
if (mask.max() - mask.min()) != 0:
|
741 |
+
mask = (mask - mask.min()) / (mask.max() - mask.min()) * 255
|
742 |
+
image_mask = self.mask_processor.preprocess(mask, height=processing_res, width=processing_res).to(self.device)
|
743 |
+
|
744 |
+
self.rgb_scheduler.set_timesteps(num_inference_steps, device=self.device)
|
745 |
+
self.depth_scheduler.set_timesteps(num_inference_steps, device=self.device)
|
746 |
+
timesteps = self.rgb_scheduler.timesteps
|
747 |
+
|
748 |
+
if mode == 'full_rgb_depth_inpaint':
|
749 |
+
rgb_latent, depth_latent = self.full_rgb_depth_inpaint(rgb_in, depth_in, image_mask, text_embed, timesteps,
|
750 |
+
generator, guidance_scale=guidance_scale)
|
751 |
+
if mode == 'partial_depth_rgb_inpaint':
|
752 |
+
rgb_latent, depth_latent = self.partial_depth_rgb_inpaint(rgb_in, depth_in, image_mask, text_embed, timesteps,
|
753 |
+
generator, guidance_scale=guidance_scale)
|
754 |
+
if mode == 'full_depth_rgb_inpaint':
|
755 |
+
rgb_latent, depth_latent = self.full_depth_rgb_inpaint(rgb_in, depth_in, image_mask, text_embed, timesteps,
|
756 |
+
generator, guidance_scale=guidance_scale)
|
757 |
+
if mode == 'joint_inpaint':
|
758 |
+
rgb_latent, depth_latent = self.joint_inpaint(rgb_in, depth_in, image_mask, text_embed, timesteps,
|
759 |
+
generator, guidance_scale=guidance_scale)
|
760 |
+
|
761 |
+
image = self.decode_image(rgb_latent)
|
762 |
+
image = self.numpy_to_pil(image)[0]
|
763 |
+
|
764 |
+
d_image = self.decode_depth(depth_latent)
|
765 |
+
d_image = d_image.cpu().permute(0, 2, 3, 1).numpy()
|
766 |
+
d_image = (d_image - d_image.min()) / (d_image.max() - d_image.min())
|
767 |
+
d_image = self.numpy_to_pil(d_image)[0]
|
768 |
+
|
769 |
+
depth = depth.squeeze().permute(1, 2, 0).cpu().numpy()
|
770 |
+
depth = (depth - depth.min()) / (depth.max() - depth.min())
|
771 |
+
ori_depth = self.numpy_to_pil(depth)[0]
|
772 |
+
|
773 |
+
ori_image = input_image.squeeze().permute(1, 2, 0).cpu().numpy()
|
774 |
+
ori_image = self.numpy_to_pil(ori_image/255)[0]
|
775 |
+
|
776 |
+
image_mask = self.numpy_to_pil(image_mask.permute(0, 2, 3, 1).cpu().numpy())[0]
|
777 |
+
cat_image = make_image_grid([ori_image, ori_depth, image_mask, image, d_image], rows=1, cols=5)
|
778 |
+
return cat_image
|
779 |
+
|
780 |
+
|
781 |
+
def encode_rgb(self, rgb_in: torch.Tensor, generator=None) -> torch.Tensor:
|
782 |
+
"""
|
783 |
+
Encode RGB image into latent.
|
784 |
+
|
785 |
+
Args:
|
786 |
+
rgb_in (`torch.Tensor`):
|
787 |
+
Input RGB image to be encoded.
|
788 |
+
|
789 |
+
Returns:
|
790 |
+
`torch.Tensor`: Image latent.
|
791 |
+
"""
|
792 |
+
# encode
|
793 |
+
image_latents = self.vae.encode(rgb_in).latent_dist.sample(generator=generator)
|
794 |
+
image_latents = self.vae.config.scaling_factor * image_latents
|
795 |
+
return image_latents
|
796 |
+
|
797 |
+
def encode_depth(self, depth_in: torch.Tensor) -> torch.Tensor:
|
798 |
+
"""
|
799 |
+
Encode RGB image into latent.
|
800 |
+
|
801 |
+
Args:
|
802 |
+
rgb_in (`torch.Tensor`):
|
803 |
+
Input RGB image to be encoded.
|
804 |
+
|
805 |
+
Returns:
|
806 |
+
`torch.Tensor`: Image latent.
|
807 |
+
"""
|
808 |
+
# encode
|
809 |
+
h = self.vae.encoder(depth_in)
|
810 |
+
moments = self.vae.quant_conv(h)
|
811 |
+
mean, logvar = torch.chunk(moments, 2, dim=1)
|
812 |
+
# scale latent
|
813 |
+
depth_latent = mean * self.depth_latent_scale_factor
|
814 |
+
return depth_latent
|
815 |
+
|
816 |
+
def decode_image(self, latents):
|
817 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
818 |
+
z = self.vae.post_quant_conv(latents)
|
819 |
+
image = self.vae.decoder(z)
|
820 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
821 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
822 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
823 |
+
return image
|
824 |
+
|
825 |
+
def decode_depth(self, depth_latent: torch.Tensor) -> torch.Tensor:
|
826 |
+
"""
|
827 |
+
Decode depth latent into depth map.
|
828 |
+
|
829 |
+
Args:
|
830 |
+
depth_latent (`torch.Tensor`):
|
831 |
+
Depth latent to be decoded.
|
832 |
+
|
833 |
+
Returns:
|
834 |
+
`torch.Tensor`: Decoded depth map.
|
835 |
+
"""
|
836 |
+
# scale latent
|
837 |
+
depth_latent = depth_latent / self.depth_latent_scale_factor
|
838 |
+
# decode
|
839 |
+
z = self.vae.post_quant_conv(depth_latent)
|
840 |
+
stacked = self.vae.decoder(z)
|
841 |
+
# mean of output channels
|
842 |
+
depth_mean = stacked.mean(dim=1, keepdim=True)
|
843 |
+
return depth_mean
|
844 |
+
|
845 |
+
def post_process_rgbd(self, prompts, rgb_image, depth_image):
|
846 |
+
|
847 |
+
rgbd_images = []
|
848 |
+
for idx, p in enumerate(prompts):
|
849 |
+
image1, image2 = rgb_image[idx], depth_image[idx]
|
850 |
+
|
851 |
+
width1, height1 = image1.size
|
852 |
+
width2, height2 = image2.size
|
853 |
+
|
854 |
+
font = ImageFont.load_default(size=20)
|
855 |
+
text = p
|
856 |
+
draw = ImageDraw.Draw(image1)
|
857 |
+
text_bbox = draw.textbbox((0, 0), text, font=font)
|
858 |
+
text_width = text_bbox[2] - text_bbox[0]
|
859 |
+
text_height = text_bbox[3] - text_bbox[1]
|
860 |
+
|
861 |
+
new_image = Image.new('RGB', (width1 + width2, max(height1, height2) + text_height), (255, 255, 255))
|
862 |
+
|
863 |
+
text_x = (new_image.width - text_width) // 2
|
864 |
+
text_y = 0
|
865 |
+
draw = ImageDraw.Draw(new_image)
|
866 |
+
draw.text((text_x, text_y), text, fill="black", font=font)
|
867 |
+
|
868 |
+
new_image.paste(image1, (0, text_height))
|
869 |
+
new_image.paste(image2, (width1, text_height))
|
870 |
+
|
871 |
+
rgbd_images.append(pil_to_tensor(new_image))
|
872 |
+
|
873 |
+
return rgbd_images
|
marigold/marigold_inpainting_pipeline.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from diffusers import StableDiffusionInpaintPipeline
|
marigold/marigold_pipeline.py
ADDED
@@ -0,0 +1,1194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Bingxin Ke, ETH Zurich. All rights reserved.
|
2 |
+
# Last modified: 2024-05-24
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
# --------------------------------------------------------------------------
|
16 |
+
# If you find this code useful, we kindly ask you to cite our paper in your work.
|
17 |
+
# Please find bibtex at: https://github.com/prs-eth/Marigold#-citation
|
18 |
+
# More information about the method can be found at https://marigoldmonodepth.github.io
|
19 |
+
# --------------------------------------------------------------------------
|
20 |
+
|
21 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
22 |
+
import logging
|
23 |
+
from diffusers.image_processor import VaeImageProcessor
|
24 |
+
import pdb
|
25 |
+
from diffusers.utils import load_image, make_image_grid
|
26 |
+
from typing import Dict, Optional, Union
|
27 |
+
import torchvision.transforms as transforms
|
28 |
+
import PIL.Image
|
29 |
+
import numpy as np
|
30 |
+
import torch
|
31 |
+
from diffusers import (
|
32 |
+
AutoencoderKL,
|
33 |
+
DDIMScheduler,
|
34 |
+
DiffusionPipeline,
|
35 |
+
LCMScheduler,
|
36 |
+
UNet2DConditionModel,
|
37 |
+
)
|
38 |
+
from .duplicate_unet import DoubleUNet2DConditionModel
|
39 |
+
import os
|
40 |
+
from torch.nn import Conv2d
|
41 |
+
from PIL import Image, ImageDraw, ImageFont
|
42 |
+
from torch.nn.parameter import Parameter
|
43 |
+
from diffusers.utils import BaseOutput
|
44 |
+
from PIL import Image
|
45 |
+
from torch.utils.data import DataLoader, TensorDataset
|
46 |
+
from torchvision.transforms import InterpolationMode
|
47 |
+
from torchvision.transforms.functional import pil_to_tensor, resize
|
48 |
+
from tqdm.auto import tqdm
|
49 |
+
from transformers import CLIPTextModel, CLIPTokenizer, CLIPTextModelWithProjection
|
50 |
+
|
51 |
+
from .util.batchsize import find_batch_size
|
52 |
+
from .util.ensemble import ensemble_depth
|
53 |
+
from .util.image_util import (
|
54 |
+
chw2hwc,
|
55 |
+
colorize_depth_maps,
|
56 |
+
get_tv_resample_method,
|
57 |
+
resize_max_res,
|
58 |
+
)
|
59 |
+
|
60 |
+
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
61 |
+
"""
|
62 |
+
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
63 |
+
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
64 |
+
"""
|
65 |
+
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
66 |
+
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
67 |
+
# rescale the results from guidance (fixes overexposure)
|
68 |
+
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
69 |
+
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
70 |
+
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
71 |
+
return noise_cfg
|
72 |
+
|
73 |
+
class MarigoldDepthOutput(BaseOutput):
|
74 |
+
"""
|
75 |
+
Output class for Marigold monocular depth prediction pipeline.
|
76 |
+
|
77 |
+
Args:
|
78 |
+
depth_np (`np.ndarray`):
|
79 |
+
Predicted depth map, with depth values in the range of [0, 1].
|
80 |
+
depth_colored (`PIL.Image.Image`):
|
81 |
+
Colorized depth map, with the shape of [3, H, W] and values in [0, 1].
|
82 |
+
uncertainty (`None` or `np.ndarray`):
|
83 |
+
Uncalibrated uncertainty(MAD, median absolute deviation) coming from ensembling.
|
84 |
+
"""
|
85 |
+
|
86 |
+
depth_np: np.ndarray
|
87 |
+
depth_colored: Union[None, Image.Image]
|
88 |
+
uncertainty: Union[None, np.ndarray]
|
89 |
+
|
90 |
+
class MarigoldPipeline(DiffusionPipeline):
|
91 |
+
"""
|
92 |
+
Pipeline for monocular depth estimation using Marigold: https://marigoldmonodepth.github.io.
|
93 |
+
|
94 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
95 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
96 |
+
|
97 |
+
Args:
|
98 |
+
unet (`UNet2DConditionModel`):
|
99 |
+
Conditional U-Net to denoise the depth latent, conditioned on image latent.
|
100 |
+
vae (`AutoencoderKL`):
|
101 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images and depth maps
|
102 |
+
to and from latent representations.
|
103 |
+
scheduler (`DDIMScheduler`):
|
104 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents.
|
105 |
+
text_encoder (`CLIPTextModel`):
|
106 |
+
Text-encoder, for empty text embedding.
|
107 |
+
tokenizer (`CLIPTokenizer`):
|
108 |
+
CLIP tokenizer.
|
109 |
+
scale_invariant (`bool`, *optional*):
|
110 |
+
A model property specifying whether the predicted depth maps are scale-invariant. This value must be set in
|
111 |
+
the model config. When used together with the `shift_invariant=True` flag, the model is also called
|
112 |
+
"affine-invariant". NB: overriding this value is not supported.
|
113 |
+
shift_invariant (`bool`, *optional*):
|
114 |
+
A model property specifying whether the predicted depth maps are shift-invariant. This value must be set in
|
115 |
+
the model config. When used together with the `scale_invariant=True` flag, the model is also called
|
116 |
+
"affine-invariant". NB: overriding this value is not supported.
|
117 |
+
default_denoising_steps (`int`, *optional*):
|
118 |
+
The minimum number of denoising diffusion steps that are required to produce a prediction of reasonable
|
119 |
+
quality with the given model. This value must be set in the model config. When the pipeline is called
|
120 |
+
without explicitly setting `num_inference_steps`, the default value is used. This is required to ensure
|
121 |
+
reasonable results with various model flavors compatible with the pipeline, such as those relying on very
|
122 |
+
short denoising schedules (`LCMScheduler`) and those with full diffusion schedules (`DDIMScheduler`).
|
123 |
+
default_processing_resolution (`int`, *optional*):
|
124 |
+
The recommended value of the `processing_resolution` parameter of the pipeline. This value must be set in
|
125 |
+
the model config. When the pipeline is called without explicitly setting `processing_resolution`, the
|
126 |
+
default value is used. This is required to ensure reasonable results with various model flavors trained
|
127 |
+
with varying optimal processing resolution values.
|
128 |
+
"""
|
129 |
+
|
130 |
+
rgb_latent_scale_factor = 0.18215
|
131 |
+
depth_latent_scale_factor = 0.18215
|
132 |
+
|
133 |
+
def __init__(
|
134 |
+
self,
|
135 |
+
unet: DoubleUNet2DConditionModel,
|
136 |
+
vae: AutoencoderKL,
|
137 |
+
scheduler: Union[DDIMScheduler, LCMScheduler],
|
138 |
+
text_encoder: CLIPTextModel,
|
139 |
+
tokenizer: CLIPTokenizer,
|
140 |
+
scale_invariant: Optional[bool] = True,
|
141 |
+
shift_invariant: Optional[bool] = True,
|
142 |
+
default_denoising_steps: Optional[int] = None,
|
143 |
+
default_processing_resolution: Optional[int] = None,
|
144 |
+
requires_safety_checker: bool = False,
|
145 |
+
):
|
146 |
+
super().__init__()
|
147 |
+
|
148 |
+
self.register_modules(
|
149 |
+
unet=unet,
|
150 |
+
vae=vae,
|
151 |
+
scheduler=scheduler,
|
152 |
+
text_encoder=text_encoder,
|
153 |
+
tokenizer=tokenizer,
|
154 |
+
)
|
155 |
+
self.register_to_config(
|
156 |
+
scale_invariant=scale_invariant,
|
157 |
+
shift_invariant=shift_invariant,
|
158 |
+
default_denoising_steps=default_denoising_steps,
|
159 |
+
default_processing_resolution=default_processing_resolution,
|
160 |
+
)
|
161 |
+
|
162 |
+
self.scale_invariant = scale_invariant
|
163 |
+
self.shift_invariant = shift_invariant
|
164 |
+
self.default_denoising_steps = default_denoising_steps
|
165 |
+
self.default_processing_resolution = default_processing_resolution
|
166 |
+
|
167 |
+
self.empty_text_embed = None
|
168 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
169 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
170 |
+
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
171 |
+
self.separate_list = [0,0]
|
172 |
+
|
173 |
+
@torch.no_grad()
|
174 |
+
def __call__(
|
175 |
+
self,
|
176 |
+
input_image: Union[Image.Image, torch.Tensor],
|
177 |
+
denoising_steps: Optional[int] = None,
|
178 |
+
ensemble_size: int = 5,
|
179 |
+
processing_res: Optional[int] = None,
|
180 |
+
match_input_res: bool = True,
|
181 |
+
resample_method: str = "bilinear",
|
182 |
+
batch_size: int = 0,
|
183 |
+
generator: Union[torch.Generator, None] = None,
|
184 |
+
color_map: str = "Spectral",
|
185 |
+
show_progress_bar: bool = True,
|
186 |
+
ensemble_kwargs: Dict = None,
|
187 |
+
) -> MarigoldDepthOutput:
|
188 |
+
"""
|
189 |
+
Function invoked when calling the pipeline.
|
190 |
+
|
191 |
+
Args:
|
192 |
+
input_image (`Image`):
|
193 |
+
Input RGB (or gray-scale) image.
|
194 |
+
denoising_steps (`int`, *optional*, defaults to `None`):
|
195 |
+
Number of denoising diffusion steps during inference. The default value `None` results in automatic
|
196 |
+
selection. The number of steps should be at least 10 with the full Marigold models, and between 1 and 4
|
197 |
+
for Marigold-LCM models.
|
198 |
+
ensemble_size (`int`, *optional*, defaults to `10`):
|
199 |
+
Number of predictions to be ensembled.
|
200 |
+
processing_res (`int`, *optional*, defaults to `None`):
|
201 |
+
Effective processing resolution. When set to `0`, processes at the original image resolution. This
|
202 |
+
produces crisper predictions, but may also lead to the overall loss of global context. The default
|
203 |
+
value `None` resolves to the optimal value from the model config.
|
204 |
+
match_input_res (`bool`, *optional*, defaults to `True`):
|
205 |
+
Resize depth prediction to match input resolution.
|
206 |
+
Only valid if `processing_res` > 0.
|
207 |
+
resample_method: (`str`, *optional*, defaults to `bilinear`):
|
208 |
+
Resampling method used to resize images and depth predictions. This can be one of `bilinear`, `bicubic` or `nearest`, defaults to: `bilinear`.
|
209 |
+
batch_size (`int`, *optional*, defaults to `0`):
|
210 |
+
Inference batch size, no bigger than `num_ensemble`.
|
211 |
+
If set to 0, the script will automatically decide the proper batch size.
|
212 |
+
generator (`torch.Generator`, *optional*, defaults to `None`)
|
213 |
+
Random generator for initial noise generation.
|
214 |
+
show_progress_bar (`bool`, *optional*, defaults to `True`):
|
215 |
+
Display a progress bar of diffusion denoising.
|
216 |
+
color_map (`str`, *optional*, defaults to `"Spectral"`, pass `None` to skip colorized depth map generation):
|
217 |
+
Colormap used to colorize the depth map.
|
218 |
+
scale_invariant (`str`, *optional*, defaults to `True`):
|
219 |
+
Flag of scale-invariant prediction, if True, scale will be adjusted from the raw prediction.
|
220 |
+
shift_invariant (`str`, *optional*, defaults to `True`):
|
221 |
+
Flag of shift-invariant prediction, if True, shift will be adjusted from the raw prediction, if False, near plane will be fixed at 0m.
|
222 |
+
ensemble_kwargs (`dict`, *optional*, defaults to `None`):
|
223 |
+
Arguments for detailed ensembling settings.
|
224 |
+
Returns:
|
225 |
+
`MarigoldDepthOutput`: Output class for Marigold monocular depth prediction pipeline, including:
|
226 |
+
- **depth_np** (`np.ndarray`) Predicted depth map, with depth values in the range of [0, 1]
|
227 |
+
- **depth_colored** (`PIL.Image.Image`) Colorized depth map, with the shape of [3, H, W] and values in [0, 1], None if `color_map` is `None`
|
228 |
+
- **uncertainty** (`None` or `np.ndarray`) Uncalibrated uncertainty(MAD, median absolute deviation)
|
229 |
+
coming from ensembling. None if `ensemble_size = 1`
|
230 |
+
"""
|
231 |
+
# Model-specific optimal default values leading to fast and reasonable results.
|
232 |
+
if denoising_steps is None:
|
233 |
+
denoising_steps = self.default_denoising_steps
|
234 |
+
if processing_res is None:
|
235 |
+
processing_res = self.default_processing_resolution
|
236 |
+
|
237 |
+
assert processing_res >= 0
|
238 |
+
assert ensemble_size >= 1
|
239 |
+
|
240 |
+
# Check if denoising step is reasonable
|
241 |
+
self._check_inference_step(denoising_steps)
|
242 |
+
|
243 |
+
resample_method: InterpolationMode = get_tv_resample_method(resample_method)
|
244 |
+
|
245 |
+
# ----------------- Image Preprocess -----------------
|
246 |
+
# Convert to torch tensor
|
247 |
+
if isinstance(input_image, Image.Image):
|
248 |
+
input_image = input_image.convert("RGB")
|
249 |
+
# convert to torch tensor [H, W, rgb] -> [rgb, H, W]
|
250 |
+
rgb = pil_to_tensor(input_image)
|
251 |
+
rgb = rgb.unsqueeze(0) # [1, rgb, H, W]
|
252 |
+
elif isinstance(input_image, torch.Tensor):
|
253 |
+
rgb = input_image
|
254 |
+
else:
|
255 |
+
raise TypeError(f"Unknown input type: {type(input_image) = }")
|
256 |
+
input_size = rgb.shape
|
257 |
+
assert (
|
258 |
+
4 == rgb.dim() and 3 == input_size[-3]
|
259 |
+
), f"Wrong input shape {input_size}, expected [1, rgb, H, W]"
|
260 |
+
|
261 |
+
# Resize image
|
262 |
+
if processing_res > 0:
|
263 |
+
rgb = resize_max_res(
|
264 |
+
rgb,
|
265 |
+
max_edge_resolution=processing_res,
|
266 |
+
resample_method=resample_method,
|
267 |
+
)
|
268 |
+
|
269 |
+
# Normalize rgb values
|
270 |
+
rgb_norm: torch.Tensor = rgb / 255.0 * 2.0 - 1.0 # [0, 255] -> [-1, 1]
|
271 |
+
rgb_norm = rgb_norm.to(self.dtype)
|
272 |
+
assert rgb_norm.min() >= -1.0 and rgb_norm.max() <= 1.0
|
273 |
+
|
274 |
+
# ----------------- Predicting depth -----------------
|
275 |
+
# Batch repeated input image
|
276 |
+
duplicated_rgb = rgb_norm.expand(ensemble_size, -1, -1, -1)
|
277 |
+
single_rgb_dataset = TensorDataset(duplicated_rgb)
|
278 |
+
if batch_size > 0:
|
279 |
+
_bs = batch_size
|
280 |
+
else:
|
281 |
+
_bs = find_batch_size(
|
282 |
+
ensemble_size=ensemble_size,
|
283 |
+
input_res=max(rgb_norm.shape[1:]),
|
284 |
+
dtype=self.dtype,
|
285 |
+
)
|
286 |
+
|
287 |
+
single_rgb_loader = DataLoader(
|
288 |
+
single_rgb_dataset, batch_size=_bs, shuffle=False
|
289 |
+
)
|
290 |
+
|
291 |
+
# Predict depth maps (batched)
|
292 |
+
depth_pred_ls = []
|
293 |
+
if show_progress_bar:
|
294 |
+
iterable = tqdm(
|
295 |
+
single_rgb_loader, desc=" " * 2 + "Inference batches", leave=False
|
296 |
+
)
|
297 |
+
else:
|
298 |
+
iterable = single_rgb_loader
|
299 |
+
for batch in iterable:
|
300 |
+
(batched_img,) = batch
|
301 |
+
depth_pred_raw = self.single_infer(
|
302 |
+
rgb_in=batched_img,
|
303 |
+
num_inference_steps=denoising_steps,
|
304 |
+
show_pbar=show_progress_bar,
|
305 |
+
generator=generator,
|
306 |
+
)
|
307 |
+
depth_pred_ls.append(depth_pred_raw.detach())
|
308 |
+
depth_preds = torch.concat(depth_pred_ls, dim=0)
|
309 |
+
torch.cuda.empty_cache() # clear vram cache for ensembling
|
310 |
+
|
311 |
+
# ----------------- Test-time ensembling -----------------
|
312 |
+
if ensemble_size > 1:
|
313 |
+
depth_pred, pred_uncert = ensemble_depth(
|
314 |
+
depth_preds,
|
315 |
+
scale_invariant=self.scale_invariant,
|
316 |
+
shift_invariant=self.shift_invariant,
|
317 |
+
max_res=50,
|
318 |
+
**(ensemble_kwargs or {}),
|
319 |
+
)
|
320 |
+
else:
|
321 |
+
depth_pred = depth_preds
|
322 |
+
pred_uncert = None
|
323 |
+
|
324 |
+
# Resize back to original resolution
|
325 |
+
if match_input_res:
|
326 |
+
depth_pred = resize(
|
327 |
+
depth_pred,
|
328 |
+
input_size[-2:],
|
329 |
+
interpolation=resample_method,
|
330 |
+
antialias=True,
|
331 |
+
)
|
332 |
+
|
333 |
+
# Convert to numpy
|
334 |
+
depth_pred = depth_pred.squeeze()
|
335 |
+
depth_pred = depth_pred.cpu().numpy()
|
336 |
+
if pred_uncert is not None:
|
337 |
+
pred_uncert = pred_uncert.squeeze().cpu().numpy()
|
338 |
+
|
339 |
+
# Clip output range
|
340 |
+
depth_pred = depth_pred.clip(0, 1)
|
341 |
+
|
342 |
+
# Colorize
|
343 |
+
if color_map is not None:
|
344 |
+
depth_colored = colorize_depth_maps(
|
345 |
+
depth_pred, 0, 1, cmap=color_map
|
346 |
+
).squeeze() # [3, H, W], value in (0, 1)
|
347 |
+
depth_colored = (depth_colored * 255).astype(np.uint8)
|
348 |
+
depth_colored_hwc = chw2hwc(depth_colored)
|
349 |
+
depth_colored_img = Image.fromarray(depth_colored_hwc)
|
350 |
+
else:
|
351 |
+
depth_colored_img = None
|
352 |
+
|
353 |
+
return MarigoldDepthOutput(
|
354 |
+
depth_np=depth_pred,
|
355 |
+
depth_colored=depth_colored_img,
|
356 |
+
uncertainty=pred_uncert,
|
357 |
+
)
|
358 |
+
|
359 |
+
def _replace_unet_conv_in(self):
|
360 |
+
# replace the first layer to accept 8 in_channels
|
361 |
+
_weight = self.unet.conv_in.weight.clone() # [320, 4, 3, 3]
|
362 |
+
_bias = self.unet.conv_in.bias.clone() # [320]
|
363 |
+
zero_weight = torch.zeros(_weight.shape).to(_weight.device)
|
364 |
+
_weight = torch.cat([_weight, zero_weight], dim=1)
|
365 |
+
# _weight = _weight.repeat((1, 2, 1, 1)) # Keep selected channel(s)
|
366 |
+
# half the activation magnitude
|
367 |
+
# _weight *= 0.5
|
368 |
+
# new conv_in channel
|
369 |
+
_n_convin_out_channel = self.unet.conv_in.out_channels
|
370 |
+
_new_conv_in = Conv2d(
|
371 |
+
8, _n_convin_out_channel, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
|
372 |
+
)
|
373 |
+
_new_conv_in.weight = Parameter(_weight)
|
374 |
+
_new_conv_in.bias = Parameter(_bias)
|
375 |
+
self.unet.conv_in = _new_conv_in
|
376 |
+
logging.info("Unet conv_in layer is replaced")
|
377 |
+
# replace config
|
378 |
+
self.unet.config["in_channels"] = 8
|
379 |
+
logging.info("Unet config is updated")
|
380 |
+
return
|
381 |
+
|
382 |
+
def _replace_unet_conv_out(self):
|
383 |
+
# replace the first layer to accept 8 in_channels
|
384 |
+
_weight = self.unet.conv_out.weight.clone() # [8, 320, 3, 3]
|
385 |
+
_bias = self.unet.conv_out.bias.clone() # [320]
|
386 |
+
_weight = _weight.repeat((2, 1, 1, 1)) # Keep selected channel(s)
|
387 |
+
_bias = _bias.repeat((2))
|
388 |
+
# half the activation magnitude
|
389 |
+
# new conv_in channel
|
390 |
+
_n_convin_out_channel = self.unet.conv_out.out_channels
|
391 |
+
_new_conv_out = Conv2d(
|
392 |
+
_n_convin_out_channel, 8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
|
393 |
+
)
|
394 |
+
_new_conv_out.weight = Parameter(_weight)
|
395 |
+
_new_conv_out.bias = Parameter(_bias)
|
396 |
+
self.unet.conv_out = _new_conv_out
|
397 |
+
logging.info("Unet conv_out layer is replaced")
|
398 |
+
# replace config
|
399 |
+
self.unet.config["out_channels"] = 8
|
400 |
+
logging.info("Unet config is updated")
|
401 |
+
return
|
402 |
+
|
403 |
+
def _check_inference_step(self, n_step: int) -> None:
|
404 |
+
"""
|
405 |
+
Check if denoising step is reasonable
|
406 |
+
Args:
|
407 |
+
n_step (`int`): denoising steps
|
408 |
+
"""
|
409 |
+
assert n_step >= 1
|
410 |
+
|
411 |
+
# if isinstance(self.scheduler, DDIMScheduler):
|
412 |
+
# if n_step < 10:
|
413 |
+
# logging.warning(
|
414 |
+
# f"Too few denoising steps: {n_step}. Recommended to use the LCM checkpoint for few-step inference."
|
415 |
+
# )
|
416 |
+
# elif isinstance(self.scheduler, LCMScheduler):
|
417 |
+
# if not 1 <= n_step <= 4:
|
418 |
+
# logging.warning(
|
419 |
+
# f"Non-optimal setting of denoising steps: {n_step}. Recommended setting is 1-4 steps."
|
420 |
+
# )
|
421 |
+
# else:
|
422 |
+
# raise RuntimeError(f"Unsupported scheduler type: {type(self.scheduler)}")
|
423 |
+
|
424 |
+
def encode_empty_text(self):
|
425 |
+
"""
|
426 |
+
Encode text embedding for empty prompt
|
427 |
+
"""
|
428 |
+
prompt = ""
|
429 |
+
text_inputs = self.tokenizer(
|
430 |
+
prompt,
|
431 |
+
padding="max_length",
|
432 |
+
max_length=self.tokenizer.model_max_length,
|
433 |
+
truncation=True,
|
434 |
+
return_tensors="pt",
|
435 |
+
)
|
436 |
+
text_input_ids = text_inputs.input_ids.to(self.text_encoder.device)
|
437 |
+
self.empty_text_embed = self.text_encoder(text_input_ids)[0].to(self.dtype)
|
438 |
+
|
439 |
+
def encode_text(self, prompt):
|
440 |
+
"""
|
441 |
+
Encode text embedding for empty prompt
|
442 |
+
"""
|
443 |
+
text_inputs = self.tokenizer(
|
444 |
+
prompt,
|
445 |
+
padding="max_length",
|
446 |
+
max_length=self.tokenizer.model_max_length,
|
447 |
+
truncation=True,
|
448 |
+
return_tensors="pt",
|
449 |
+
)
|
450 |
+
text_input_ids = text_inputs.input_ids.to(self.text_encoder.device)
|
451 |
+
text_embed = self.text_encoder(text_input_ids)[0].to(self.dtype)
|
452 |
+
return text_embed
|
453 |
+
|
454 |
+
def numpy_to_pil(self, images: np.ndarray) -> PIL.Image.Image:
|
455 |
+
"""
|
456 |
+
Convert a numpy image or a batch of images to a PIL image.
|
457 |
+
"""
|
458 |
+
if images.ndim == 3:
|
459 |
+
images = images[None, ...]
|
460 |
+
images = (images * 255).round().astype("uint8")
|
461 |
+
if images.shape[-1] == 1:
|
462 |
+
# special case for grayscale (single channel) images
|
463 |
+
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
|
464 |
+
else:
|
465 |
+
pil_images = [Image.fromarray(image) for image in images]
|
466 |
+
|
467 |
+
return pil_images
|
468 |
+
|
469 |
+
@torch.no_grad()
|
470 |
+
def generate_rgbd(
|
471 |
+
self,
|
472 |
+
prompt: str or list,
|
473 |
+
num_inference_steps: int,
|
474 |
+
generator: Union[torch.Generator, None],
|
475 |
+
show_pbar: bool = None,
|
476 |
+
color_map: str = "Spectral",
|
477 |
+
height: int = 60,
|
478 |
+
width: int = 80
|
479 |
+
):
|
480 |
+
"""
|
481 |
+
Perform an individual depth prediction without ensembling.
|
482 |
+
|
483 |
+
Args:
|
484 |
+
rgb_in (`torch.Tensor`):
|
485 |
+
Input RGB image.
|
486 |
+
num_inference_steps (`int`):
|
487 |
+
Number of diffusion denoisign steps (DDIM) during inference.
|
488 |
+
show_pbar (`bool`):
|
489 |
+
Display a progress bar of diffusion denoising.
|
490 |
+
generator (`torch.Generator`)
|
491 |
+
Random generator for initial noise generation.
|
492 |
+
Returns:
|
493 |
+
`torch.Tensor`: Predicted depth map.
|
494 |
+
"""
|
495 |
+
device = self.device
|
496 |
+
ori_type = self.dtype
|
497 |
+
|
498 |
+
# Set timesteps
|
499 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
500 |
+
timesteps = self.scheduler.timesteps # [T]
|
501 |
+
|
502 |
+
if isinstance(prompt, list):
|
503 |
+
bs = len(prompt)
|
504 |
+
batch_text_embed = []
|
505 |
+
for p in prompt:
|
506 |
+
batch_text_embed.append(self.encode_text(p))
|
507 |
+
batch_text_embed = torch.cat(batch_text_embed, dim=0)
|
508 |
+
elif isinstance(prompt, str):
|
509 |
+
bs = 1
|
510 |
+
batch_text_embed = self.encode_text(prompt).unsqueeze(0)
|
511 |
+
else:
|
512 |
+
raise NotImplementedError
|
513 |
+
|
514 |
+
if self.empty_text_embed is None:
|
515 |
+
self.encode_empty_text()
|
516 |
+
batch_empty_text_embed = self.empty_text_embed.repeat(
|
517 |
+
(batch_text_embed.shape[0], 1, 1)
|
518 |
+
).to(device) # [B, 2, 1024]
|
519 |
+
|
520 |
+
text_embed = torch.cat([batch_empty_text_embed, batch_text_embed], dim=0)
|
521 |
+
|
522 |
+
# Initial depth map (noise)
|
523 |
+
cat_latent = torch.randn(
|
524 |
+
[bs, self.unet.config["in_channels"], height, width],
|
525 |
+
device=device,
|
526 |
+
dtype=torch.bfloat16,
|
527 |
+
generator=generator,
|
528 |
+
) * self.scheduler.init_noise_sigma # [B, 8, h, w]
|
529 |
+
|
530 |
+
# Denoising loop
|
531 |
+
if show_pbar:
|
532 |
+
iterable = tqdm(
|
533 |
+
enumerate(timesteps),
|
534 |
+
total=len(timesteps),
|
535 |
+
leave=False,
|
536 |
+
desc=" " * 4 + "Diffusion denoising",
|
537 |
+
)
|
538 |
+
else:
|
539 |
+
iterable = enumerate(timesteps)
|
540 |
+
|
541 |
+
self.to(torch.bfloat16)
|
542 |
+
for i, t in iterable:
|
543 |
+
latent_model_input = torch.cat([cat_latent] * 2)
|
544 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
545 |
+
|
546 |
+
# predict the noise residual
|
547 |
+
with torch.no_grad():
|
548 |
+
noise_pred = self.unet(
|
549 |
+
latent_model_input,
|
550 |
+
t,
|
551 |
+
t,
|
552 |
+
encoder_hidden_states=text_embed.to(torch.bfloat16),
|
553 |
+
return_dict=False,
|
554 |
+
# separate_list=self.separate_list
|
555 |
+
)[0]
|
556 |
+
# perform guidance
|
557 |
+
guidance_scale = 7.5
|
558 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
559 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
560 |
+
|
561 |
+
# compute the previous noisy sample x_t -> x_t-1
|
562 |
+
cat_latent = self.scheduler.step(noise_pred, t, cat_latent).prev_sample
|
563 |
+
|
564 |
+
# self.unet.to(default_dtype)
|
565 |
+
# cat_latent.to(default_dtype)
|
566 |
+
|
567 |
+
image = self.decode_image(cat_latent[:, 0:4, :, :])
|
568 |
+
|
569 |
+
image = self.numpy_to_pil(image)
|
570 |
+
# depth_pred = depth
|
571 |
+
depth = self.decode_depth(cat_latent[:, 4:, :, :])
|
572 |
+
depth = (depth - depth.min()) / (depth.max() - depth.min())
|
573 |
+
# depth = torch.clip(depth, -1.0, 1.0)
|
574 |
+
# depth = (depth + 1.0) / 2.0
|
575 |
+
depth_pred = depth.squeeze()
|
576 |
+
depth_pred = depth_pred.float().cpu().numpy()
|
577 |
+
depth_pred = depth_pred.clip(0, 1)
|
578 |
+
|
579 |
+
# Colorize
|
580 |
+
if color_map is not None:
|
581 |
+
depth_colored_img = []
|
582 |
+
depth_colored = colorize_depth_maps(
|
583 |
+
depth_pred, 0, 1, cmap=color_map
|
584 |
+
).squeeze() # [3, H, W], value in (0, 1)
|
585 |
+
depth_colored_img = self.numpy_to_pil(np.transpose(depth_colored, (0, 2, 3, 1)))
|
586 |
+
else:
|
587 |
+
depth_colored_img = None
|
588 |
+
|
589 |
+
rgbd_images = self.post_process_rgbd(prompt, image, depth_colored_img)
|
590 |
+
self.to(ori_type)
|
591 |
+
|
592 |
+
return rgbd_images
|
593 |
+
|
594 |
+
@torch.no_grad()
|
595 |
+
def image2depth(self,
|
596 |
+
input_image: Union[Image.Image, torch.Tensor],
|
597 |
+
denoising_steps: Optional[int] = None,
|
598 |
+
ensemble_size: int = 5,
|
599 |
+
processing_res: Optional[int] = None,
|
600 |
+
match_input_res: bool = True,
|
601 |
+
resample_method: str = "bilinear",
|
602 |
+
batch_size: int = 0,
|
603 |
+
generator: Union[torch.Generator, None] = None,
|
604 |
+
color_map: str = "Spectral",
|
605 |
+
show_progress_bar: bool = True,
|
606 |
+
ensemble_kwargs: Dict = None,
|
607 |
+
cfg_scale: float = 1.0
|
608 |
+
):
|
609 |
+
# Model-specific optimal default values leading to fast and reasonable results.
|
610 |
+
if denoising_steps is None:
|
611 |
+
denoising_steps = self.default_denoising_steps
|
612 |
+
if processing_res is None:
|
613 |
+
processing_res = self.default_processing_resolution
|
614 |
+
|
615 |
+
ori_type = self.dtype
|
616 |
+
self.to(torch.bfloat16)
|
617 |
+
|
618 |
+
assert processing_res >= 0
|
619 |
+
assert ensemble_size >= 1
|
620 |
+
|
621 |
+
# Check if denoising step is reasonable
|
622 |
+
self._check_inference_step(denoising_steps)
|
623 |
+
|
624 |
+
resample_method: InterpolationMode = get_tv_resample_method(resample_method)
|
625 |
+
|
626 |
+
# ----------------- Image Preprocess -----------------
|
627 |
+
# Convert to torch tensor
|
628 |
+
if isinstance(input_image, Image.Image):
|
629 |
+
input_image = input_image.convert("RGB")
|
630 |
+
# convert to torch tensor [H, W, rgb] -> [rgb, H, W]
|
631 |
+
rgb = pil_to_tensor(input_image)
|
632 |
+
rgb = rgb.unsqueeze(0) # [1, rgb, H, W]
|
633 |
+
elif isinstance(input_image, torch.Tensor):
|
634 |
+
rgb = input_image
|
635 |
+
else:
|
636 |
+
raise TypeError(f"Unknown input type: {type(input_image) = }")
|
637 |
+
input_size = rgb.shape
|
638 |
+
assert (
|
639 |
+
4 == rgb.dim() and 3 == input_size[-3]
|
640 |
+
), f"Wrong input shape {input_size}, expected [1, rgb, H, W]"
|
641 |
+
|
642 |
+
# Resize image
|
643 |
+
if processing_res > 0:
|
644 |
+
rgb = resize_max_res(
|
645 |
+
rgb,
|
646 |
+
max_edge_resolution=processing_res,
|
647 |
+
resample_method=resample_method,
|
648 |
+
)
|
649 |
+
|
650 |
+
# Normalize rgb values
|
651 |
+
rgb_norm: torch.Tensor = rgb / 255.0 * 2.0 - 1.0 # [0, 255] -> [-1, 1]
|
652 |
+
rgb_norm = rgb_norm.to(self.dtype)
|
653 |
+
assert rgb_norm.min() >= -1.0 and rgb_norm.max() <= 1.0
|
654 |
+
|
655 |
+
# ----------------- Predicting depth -----------------
|
656 |
+
# Batch repeated input image
|
657 |
+
duplicated_rgb = rgb_norm.expand(ensemble_size, -1, -1, -1)
|
658 |
+
single_rgb_dataset = TensorDataset(duplicated_rgb)
|
659 |
+
if batch_size > 0:
|
660 |
+
_bs = batch_size
|
661 |
+
else:
|
662 |
+
_bs = find_batch_size(
|
663 |
+
ensemble_size=ensemble_size,
|
664 |
+
input_res=max(rgb_norm.shape[1:]),
|
665 |
+
dtype=self.dtype,
|
666 |
+
)
|
667 |
+
|
668 |
+
single_rgb_loader = DataLoader(
|
669 |
+
single_rgb_dataset, batch_size=_bs, shuffle=False
|
670 |
+
)
|
671 |
+
|
672 |
+
# Predict depth maps (batched)
|
673 |
+
depth_pred_ls = []
|
674 |
+
if show_progress_bar:
|
675 |
+
iterable = tqdm(
|
676 |
+
single_rgb_loader, desc=" " * 2 + "Inference batches", leave=False
|
677 |
+
)
|
678 |
+
else:
|
679 |
+
iterable = single_rgb_loader
|
680 |
+
for batch in iterable:
|
681 |
+
(batched_img,) = batch
|
682 |
+
depth_pred_raw = self.single_image2depth(
|
683 |
+
rgb_in=batched_img,
|
684 |
+
num_inference_steps=denoising_steps,
|
685 |
+
show_pbar=show_progress_bar,
|
686 |
+
generator=generator,
|
687 |
+
cfg_scale=cfg_scale
|
688 |
+
)
|
689 |
+
depth_pred_ls.append(depth_pred_raw.detach())
|
690 |
+
depth_preds = torch.concat(depth_pred_ls, dim=0)
|
691 |
+
torch.cuda.empty_cache() # clear vram cache for ensembling
|
692 |
+
depth_preds = depth_preds.to(torch.float32)
|
693 |
+
# ----------------- Test-time ensembling -----------------
|
694 |
+
if ensemble_size > 1:
|
695 |
+
depth_pred, pred_uncert = ensemble_depth(
|
696 |
+
depth_preds,
|
697 |
+
scale_invariant=self.scale_invariant,
|
698 |
+
shift_invariant=self.shift_invariant,
|
699 |
+
max_res=50,
|
700 |
+
**(ensemble_kwargs or {}),
|
701 |
+
)
|
702 |
+
else:
|
703 |
+
depth_pred = depth_preds
|
704 |
+
pred_uncert = None
|
705 |
+
|
706 |
+
# Resize back to original resolution
|
707 |
+
if match_input_res:
|
708 |
+
depth_pred = resize(
|
709 |
+
depth_pred,
|
710 |
+
input_size[-2:],
|
711 |
+
interpolation=resample_method,
|
712 |
+
antialias=True,
|
713 |
+
)
|
714 |
+
|
715 |
+
# Convert to numpy
|
716 |
+
depth_pred = depth_pred.squeeze()
|
717 |
+
depth_pred = depth_pred.cpu().numpy()
|
718 |
+
if pred_uncert is not None:
|
719 |
+
pred_uncert = pred_uncert.squeeze().cpu().numpy()
|
720 |
+
|
721 |
+
# Clip output range
|
722 |
+
depth_pred = depth_pred.clip(0, 1)
|
723 |
+
|
724 |
+
# Colorize
|
725 |
+
if color_map is not None:
|
726 |
+
depth_colored = colorize_depth_maps(
|
727 |
+
depth_pred, 0, 1, cmap=color_map
|
728 |
+
).squeeze() # [3, H, W], value in (0, 1)
|
729 |
+
depth_colored = (depth_colored * 255).astype(np.uint8)
|
730 |
+
depth_colored_hwc = chw2hwc(depth_colored)
|
731 |
+
depth_colored_img = Image.fromarray(depth_colored_hwc)
|
732 |
+
else:
|
733 |
+
depth_colored_img = None
|
734 |
+
|
735 |
+
self.to(ori_type)
|
736 |
+
|
737 |
+
return MarigoldDepthOutput(
|
738 |
+
depth_np=depth_pred,
|
739 |
+
depth_colored=depth_colored_img,
|
740 |
+
uncertainty=pred_uncert,
|
741 |
+
)
|
742 |
+
|
743 |
+
@torch.no_grad()
|
744 |
+
def single_image2depth(
|
745 |
+
self,
|
746 |
+
rgb_in: torch.Tensor,
|
747 |
+
num_inference_steps: int,
|
748 |
+
generator: Union[torch.Generator, None],
|
749 |
+
show_pbar: bool,
|
750 |
+
cfg_scale: float = 1.0
|
751 |
+
) -> torch.Tensor:
|
752 |
+
"""
|
753 |
+
Perform an individual depth prediction without ensembling.
|
754 |
+
|
755 |
+
Args:
|
756 |
+
rgb_in (`torch.Tensor`):
|
757 |
+
Input RGB image.
|
758 |
+
num_inference_steps (`int`):
|
759 |
+
Number of diffusion denoisign steps (DDIM) during inference.
|
760 |
+
show_pbar (`bool`):
|
761 |
+
Display a progress bar of diffusion denoising.
|
762 |
+
generator (`torch.Generator`)
|
763 |
+
Random generator for initial noise generation.
|
764 |
+
Returns:
|
765 |
+
`torch.Tensor`: Predicted depth map.
|
766 |
+
"""
|
767 |
+
device = self.device
|
768 |
+
rgb_in = rgb_in.to(device)
|
769 |
+
|
770 |
+
# Set timesteps
|
771 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
772 |
+
timesteps = self.scheduler.timesteps # [T]
|
773 |
+
# Encode image
|
774 |
+
rgb_latent = self.encode_rgb(rgb_in)
|
775 |
+
|
776 |
+
# Initial depth map (noise)
|
777 |
+
depth_latent = torch.randn(
|
778 |
+
rgb_latent.shape,
|
779 |
+
device=device,
|
780 |
+
dtype=self.dtype,
|
781 |
+
generator=generator,
|
782 |
+
) * self.scheduler.init_noise_sigma # [B, 4, h, w]
|
783 |
+
|
784 |
+
# Batched empty text embedding
|
785 |
+
if self.empty_text_embed is None:
|
786 |
+
self.encode_empty_text()
|
787 |
+
batch_empty_text_embed = self.empty_text_embed.repeat(
|
788 |
+
(rgb_latent.shape[0], 1, 1)
|
789 |
+
).to(device).to(self.dtype) # [B, 2, 1024]
|
790 |
+
|
791 |
+
# Denoising loop
|
792 |
+
if show_pbar:
|
793 |
+
iterable = tqdm(
|
794 |
+
enumerate(timesteps),
|
795 |
+
total=len(timesteps),
|
796 |
+
leave=False,
|
797 |
+
desc=" " * 4 + "Diffusion denoising",
|
798 |
+
)
|
799 |
+
else:
|
800 |
+
iterable = enumerate(timesteps)
|
801 |
+
|
802 |
+
for i, t in iterable:
|
803 |
+
unet_input = torch.cat(
|
804 |
+
[rgb_latent, depth_latent], dim=1
|
805 |
+
) # this order is important
|
806 |
+
# predict the noise residual
|
807 |
+
noise_pred = self.unet(
|
808 |
+
unet_input, rgb_timestep=0, depth_timestep=t, encoder_hidden_states=batch_empty_text_embed
|
809 |
+
).sample # [B, 4, h, w]
|
810 |
+
|
811 |
+
if cfg_scale > 1:
|
812 |
+
uncond_noise_pred = self.unet(
|
813 |
+
unet_input, rgb_timestep=0, depth_timestep=t, encoder_hidden_states=batch_empty_text_embed, rgb2depth_scale=0.3
|
814 |
+
).sample # [B, 4, h, w]
|
815 |
+
|
816 |
+
uncond_pred = uncond_noise_pred[:, 4:, :, :]
|
817 |
+
cond_pred = noise_pred[:, 4:, :, :]
|
818 |
+
|
819 |
+
cond_pred = uncond_pred + cfg_scale * (cond_pred - uncond_pred)
|
820 |
+
else:
|
821 |
+
cond_pred = noise_pred[:, 4:, :, :]
|
822 |
+
|
823 |
+
# compute the previous noisy sample x_t -> x_t-1
|
824 |
+
depth_latent = self.scheduler.step(
|
825 |
+
cond_pred, t, depth_latent
|
826 |
+
).prev_sample
|
827 |
+
|
828 |
+
depth = self.decode_depth(depth_latent)
|
829 |
+
|
830 |
+
# clip prediction
|
831 |
+
depth = torch.clip(depth, -1.0, 1.0)
|
832 |
+
# shift to [0, 1]
|
833 |
+
depth = (depth + 1.0) / 2.0
|
834 |
+
|
835 |
+
return depth
|
836 |
+
@torch.no_grad()
|
837 |
+
def rgbd2rgbd(self,
|
838 |
+
input_image:[torch.Tensor, PIL.Image.Image],
|
839 |
+
depth_image:[torch.Tensor, PIL.Image.Image],
|
840 |
+
prompt: str = '',
|
841 |
+
guidance_scale: float = 7.5,
|
842 |
+
strength: float = 0.75,
|
843 |
+
generator: Union[torch.Generator, None] = None,
|
844 |
+
num_inference_steps: int = 50,
|
845 |
+
show_pbar: bool = False,
|
846 |
+
resample_method: str = "bilinear",
|
847 |
+
processing_res: int = 768
|
848 |
+
) -> torch.Tensor:
|
849 |
+
self._check_inference_step(num_inference_steps)
|
850 |
+
|
851 |
+
resample_method: InterpolationMode = get_tv_resample_method(resample_method)
|
852 |
+
|
853 |
+
# ----------------- encoder prompt -----------------
|
854 |
+
if isinstance(prompt, list):
|
855 |
+
bs = len(prompt)
|
856 |
+
batch_text_embed = []
|
857 |
+
for p in prompt:
|
858 |
+
batch_text_embed.append(self.encode_text(p))
|
859 |
+
batch_text_embed = torch.cat(batch_text_embed, dim=0)
|
860 |
+
elif isinstance(prompt, str):
|
861 |
+
bs = 1
|
862 |
+
batch_text_embed = self.encode_text(prompt).unsqueeze(0)
|
863 |
+
else:
|
864 |
+
raise NotImplementedError
|
865 |
+
|
866 |
+
if self.empty_text_embed is None:
|
867 |
+
self.encode_empty_text()
|
868 |
+
batch_empty_text_embed = self.empty_text_embed.repeat(
|
869 |
+
(batch_text_embed.shape[0], 1, 1)
|
870 |
+
).to(self.device) # [B, 2, 1024]
|
871 |
+
text_embed = torch.cat([batch_empty_text_embed, batch_text_embed], dim=0)
|
872 |
+
|
873 |
+
# ----------------- Image Preprocess -----------------
|
874 |
+
# Convert to torch tensor
|
875 |
+
rgb = input_image
|
876 |
+
input_size = rgb.shape
|
877 |
+
assert (
|
878 |
+
4 == rgb.dim() and 3 == input_size[-3]
|
879 |
+
), f"Wrong input shape {input_size}, expected [1, rgb, H, W]"
|
880 |
+
if processing_res > 0:
|
881 |
+
rgb = resize_max_res(
|
882 |
+
rgb,
|
883 |
+
max_edge_resolution=processing_res,
|
884 |
+
resample_method=resample_method,
|
885 |
+
)
|
886 |
+
rgb_norm: torch.Tensor = rgb / 255.0 * 2.0 - 1.0 # [0, 255] -> [-1, 1]
|
887 |
+
rgb_in = rgb_norm.to(self.dtype).to(self.device)
|
888 |
+
assert rgb_norm.min() >= -1.0 and rgb_norm.max() <= 1.0
|
889 |
+
|
890 |
+
depth = depth_image
|
891 |
+
depth = depth.repeat(1, 3, 1, 1)
|
892 |
+
input_size = depth.shape
|
893 |
+
assert (
|
894 |
+
4 == depth.dim() and 3 == input_size[-3]
|
895 |
+
), f"Wrong input shape {input_size}, expected [1, rgb, H, W]"
|
896 |
+
if processing_res > 0:
|
897 |
+
depth = resize_max_res(
|
898 |
+
depth,
|
899 |
+
max_edge_resolution=processing_res,
|
900 |
+
resample_method=resample_method,
|
901 |
+
)
|
902 |
+
depth_norm: torch.Tensor = (depth - depth.min()) / (depth.max() - depth.min()) * 2.0 - 1.0 # [0, 255] -> [-1, 1]
|
903 |
+
depth_in = depth_norm.to(self.dtype).to(self.device)
|
904 |
+
assert depth_norm.min() >= -1.0 and depth_norm.max() <= 1.0
|
905 |
+
|
906 |
+
# Set timesteps
|
907 |
+
self.scheduler.set_timesteps(num_inference_steps, device=self.device)
|
908 |
+
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
909 |
+
t_start = max(num_inference_steps - init_timestep, 0)
|
910 |
+
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order:]
|
911 |
+
num_inference_steps = num_inference_steps - t_start
|
912 |
+
latent_timestep = timesteps[:1]
|
913 |
+
|
914 |
+
# Encode depth
|
915 |
+
rgb_latent = self.encode_rgb(rgb_in)
|
916 |
+
depth_latent = self.encode_depth(depth_in)
|
917 |
+
input_latent = torch.cat([rgb_latent, depth_latent], dim=1)
|
918 |
+
noise = torch.randn(
|
919 |
+
input_latent.shape,
|
920 |
+
device=self.device,
|
921 |
+
dtype=self.dtype,
|
922 |
+
generator=generator,
|
923 |
+
)
|
924 |
+
|
925 |
+
cat_latent = self.scheduler.add_noise(input_latent, noise, latent_timestep)
|
926 |
+
# noisy_latent = self.scheduler.add_noise(rgb_latent, noise, latent_timestep)
|
927 |
+
# cat_latent = torch.cat([noisy_latent, depth_latent], dim=1)
|
928 |
+
|
929 |
+
for i, t in enumerate(timesteps):
|
930 |
+
latent_model_input = torch.cat([cat_latent] * 2)
|
931 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
932 |
+
|
933 |
+
# predict the noise residual
|
934 |
+
with torch.no_grad():
|
935 |
+
noise_pred = self.unet(
|
936 |
+
latent_model_input,
|
937 |
+
rgb_timestep=t,
|
938 |
+
depth_timestep=t,
|
939 |
+
encoder_hidden_states=text_embed,
|
940 |
+
return_dict=False,
|
941 |
+
# separate_list=self.separate_list
|
942 |
+
)[0]
|
943 |
+
# perform guidance
|
944 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
945 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
946 |
+
|
947 |
+
# compute the previous noisy sample x_t -> x_t-1
|
948 |
+
cat_latent = self.scheduler.step(noise_pred, t, cat_latent).prev_sample
|
949 |
+
|
950 |
+
image = self.decode_image(cat_latent[:, :4, :, :])
|
951 |
+
image = self.numpy_to_pil(image)
|
952 |
+
d_image = self.decode_depth(cat_latent[:, 4:, :, :])
|
953 |
+
d_image = d_image.cpu().permute(0, 2, 3, 1).numpy()
|
954 |
+
for i in range(len(prompt)):
|
955 |
+
d_image[i] = (d_image[i] - d_image[i].min()) / (d_image[i].max() - d_image[i].min())
|
956 |
+
d_image = self.numpy_to_pil(d_image)
|
957 |
+
|
958 |
+
cat_image = make_image_grid([image[0], d_image[0]], rows=1, cols=2)
|
959 |
+
return cat_image
|
960 |
+
|
961 |
+
@torch.no_grad()
|
962 |
+
def single_depth2image(
|
963 |
+
self,
|
964 |
+
depth_image: [torch.Tensor, PIL.Image.Image],
|
965 |
+
prompt: str = '',
|
966 |
+
generator: Union[torch.Generator, None] = None,
|
967 |
+
num_inference_steps: int = 50,
|
968 |
+
show_pbar: bool = False,
|
969 |
+
resample_method: str = "bilinear",
|
970 |
+
processing_res: int = 640
|
971 |
+
) -> torch.Tensor:
|
972 |
+
"""
|
973 |
+
Perform an individual depth prediction without ensembling.
|
974 |
+
|
975 |
+
Args:
|
976 |
+
rgb_in (`torch.Tensor`):
|
977 |
+
Input RGB image.
|
978 |
+
num_inference_steps (`int`):
|
979 |
+
Number of diffusion denoisign steps (DDIM) during inference.
|
980 |
+
show_pbar (`bool`):
|
981 |
+
Display a progress bar of diffusion denoising.
|
982 |
+
generator (`torch.Generator`)
|
983 |
+
Random generator for initial noise generation.
|
984 |
+
Returns:
|
985 |
+
`torch.Tensor`: Predicted depth map.
|
986 |
+
"""
|
987 |
+
device = self.device
|
988 |
+
ori_type = self.dtype
|
989 |
+
# Check if denoising step is reasonable
|
990 |
+
self._check_inference_step(num_inference_steps)
|
991 |
+
|
992 |
+
resample_method: InterpolationMode = get_tv_resample_method(resample_method)
|
993 |
+
|
994 |
+
# ----------------- Image Preprocess -----------------
|
995 |
+
# Convert to torch tensor
|
996 |
+
if isinstance(depth_image, Image.Image):
|
997 |
+
depth = pil_to_tensor(depth_image)
|
998 |
+
depth = depth.unsqueeze(0) # [1, rgb, H, W]
|
999 |
+
elif isinstance(depth_image, torch.Tensor):
|
1000 |
+
depth = depth_image
|
1001 |
+
else:
|
1002 |
+
raise TypeError(f"Unknown input type: {type(depth_image) = }")
|
1003 |
+
depth = depth.repeat(1, 3, 1, 1)
|
1004 |
+
input_size = depth.shape
|
1005 |
+
assert (
|
1006 |
+
4 == depth.dim() and 3 == input_size[-3]
|
1007 |
+
), f"Wrong input shape {input_size}, expected [1, rgb, H, W]"
|
1008 |
+
|
1009 |
+
# Resize image
|
1010 |
+
if processing_res > 0:
|
1011 |
+
depth = resize_max_res(
|
1012 |
+
depth,
|
1013 |
+
max_edge_resolution=processing_res,
|
1014 |
+
resample_method=resample_method,
|
1015 |
+
)
|
1016 |
+
|
1017 |
+
# Normalize rgb values
|
1018 |
+
depth_norm: torch.Tensor = depth / 255.0 * 2.0 - 1.0 # [0, 255] -> [-1, 1]
|
1019 |
+
assert depth_norm.min() >= -1.0 and depth_norm.max() <= 1.0
|
1020 |
+
depth_in = depth_norm.to(ori_type).to(device)
|
1021 |
+
|
1022 |
+
# Set timesteps
|
1023 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
1024 |
+
timesteps = self.scheduler.timesteps # [T]
|
1025 |
+
|
1026 |
+
# Encode depth
|
1027 |
+
depth_latent = self.encode_depth(depth_in)
|
1028 |
+
|
1029 |
+
# Initial rgb map (noise)
|
1030 |
+
rgb_latent = torch.randn(
|
1031 |
+
depth_latent.shape,
|
1032 |
+
device=device,
|
1033 |
+
dtype=ori_type,
|
1034 |
+
generator=generator,
|
1035 |
+
) * self.scheduler.init_noise_sigma # [B, 4, h, w]
|
1036 |
+
|
1037 |
+
# encode text input_ids
|
1038 |
+
if isinstance(prompt, list):
|
1039 |
+
bs = len(prompt)
|
1040 |
+
batch_text_embed = []
|
1041 |
+
for p in prompt:
|
1042 |
+
batch_text_embed.append(self.encode_text(p))
|
1043 |
+
batch_text_embed = torch.cat(batch_text_embed, dim=0)
|
1044 |
+
elif isinstance(prompt, str):
|
1045 |
+
bs = 1
|
1046 |
+
batch_text_embed = self.encode_text(prompt)
|
1047 |
+
else:
|
1048 |
+
raise NotImplementedError
|
1049 |
+
|
1050 |
+
if self.empty_text_embed is None:
|
1051 |
+
self.encode_empty_text()
|
1052 |
+
batch_empty_text_embed = self.empty_text_embed.repeat((batch_text_embed.shape[0], 1, 1)).to(device) # [B, 2, 1024]
|
1053 |
+
|
1054 |
+
text_embed = torch.cat([batch_empty_text_embed, batch_text_embed], dim=0)
|
1055 |
+
|
1056 |
+
# Denoising loop
|
1057 |
+
if show_pbar:
|
1058 |
+
iterable = tqdm(
|
1059 |
+
enumerate(timesteps),
|
1060 |
+
total=len(timesteps),
|
1061 |
+
leave=False,
|
1062 |
+
desc=" " * 4 + "Diffusion denoising",
|
1063 |
+
)
|
1064 |
+
else:
|
1065 |
+
iterable = enumerate(timesteps)
|
1066 |
+
|
1067 |
+
self.unet.to(torch.bfloat16)
|
1068 |
+
for i, t in iterable:
|
1069 |
+
cat_latent = torch.cat(
|
1070 |
+
[rgb_latent, depth_latent], dim=1
|
1071 |
+
) # this order is important
|
1072 |
+
latent_model_input = torch.cat([cat_latent] * 2)
|
1073 |
+
# predict the noise residual
|
1074 |
+
with torch.no_grad():
|
1075 |
+
noise_pred = self.unet(
|
1076 |
+
latent_model_input.to(torch.bfloat16),
|
1077 |
+
rgb_timestep=t,
|
1078 |
+
depth_timestep=0,
|
1079 |
+
encoder_hidden_states=text_embed.to(torch.bfloat16),
|
1080 |
+
return_dict=False,
|
1081 |
+
)[0]
|
1082 |
+
|
1083 |
+
# perform guidance
|
1084 |
+
guidance_scale = 7.5
|
1085 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1086 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1087 |
+
|
1088 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1089 |
+
rgb_latent = self.scheduler.step(noise_pred[:, :4, :, :], t, rgb_latent).prev_sample
|
1090 |
+
|
1091 |
+
image = self.decode_image(rgb_latent)
|
1092 |
+
image = self.numpy_to_pil(image)[0]
|
1093 |
+
image = image.resize((input_size[-1], input_size[-2]), Image.BILINEAR)
|
1094 |
+
|
1095 |
+
self.unet.to(ori_type)
|
1096 |
+
|
1097 |
+
return image
|
1098 |
+
|
1099 |
+
def encode_rgb(self, rgb_in: torch.Tensor) -> torch.Tensor:
|
1100 |
+
"""
|
1101 |
+
Encode RGB image into latent.
|
1102 |
+
|
1103 |
+
Args:
|
1104 |
+
rgb_in (`torch.Tensor`):
|
1105 |
+
Input RGB image to be encoded.
|
1106 |
+
|
1107 |
+
Returns:
|
1108 |
+
`torch.Tensor`: Image latent.
|
1109 |
+
"""
|
1110 |
+
# encode
|
1111 |
+
h = self.vae.encoder(rgb_in)
|
1112 |
+
moments = self.vae.quant_conv(h)
|
1113 |
+
mean, logvar = torch.chunk(moments, 2, dim=1)
|
1114 |
+
# scale latent
|
1115 |
+
rgb_latent = mean * self.rgb_latent_scale_factor
|
1116 |
+
return rgb_latent
|
1117 |
+
|
1118 |
+
def encode_depth(self, depth_in: torch.Tensor) -> torch.Tensor:
|
1119 |
+
"""
|
1120 |
+
Encode RGB image into latent.
|
1121 |
+
|
1122 |
+
Args:
|
1123 |
+
rgb_in (`torch.Tensor`):
|
1124 |
+
Input RGB image to be encoded.
|
1125 |
+
|
1126 |
+
Returns:
|
1127 |
+
`torch.Tensor`: Image latent.
|
1128 |
+
"""
|
1129 |
+
# encode
|
1130 |
+
h = self.vae.encoder(depth_in)
|
1131 |
+
moments = self.vae.quant_conv(h)
|
1132 |
+
mean, logvar = torch.chunk(moments, 2, dim=1)
|
1133 |
+
# scale latent
|
1134 |
+
depth_latent = mean * self.depth_latent_scale_factor
|
1135 |
+
return depth_latent
|
1136 |
+
|
1137 |
+
def decode_image(self, latents):
|
1138 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
1139 |
+
z = self.vae.post_quant_conv(latents)
|
1140 |
+
image = self.vae.decoder(z)
|
1141 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
1142 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
1143 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
1144 |
+
return image
|
1145 |
+
|
1146 |
+
def decode_depth(self, depth_latent: torch.Tensor) -> torch.Tensor:
|
1147 |
+
"""
|
1148 |
+
Decode depth latent into depth map.
|
1149 |
+
|
1150 |
+
Args:
|
1151 |
+
depth_latent (`torch.Tensor`):
|
1152 |
+
Depth latent to be decoded.
|
1153 |
+
|
1154 |
+
Returns:
|
1155 |
+
`torch.Tensor`: Decoded depth map.
|
1156 |
+
"""
|
1157 |
+
# scale latent
|
1158 |
+
depth_latent = depth_latent / self.depth_latent_scale_factor
|
1159 |
+
# decode
|
1160 |
+
z = self.vae.post_quant_conv(depth_latent)
|
1161 |
+
stacked = self.vae.decoder(z)
|
1162 |
+
# mean of output channels
|
1163 |
+
depth_mean = stacked.mean(dim=1, keepdim=True)
|
1164 |
+
return depth_mean
|
1165 |
+
|
1166 |
+
def post_process_rgbd(self, prompts, rgb_image, depth_image):
|
1167 |
+
|
1168 |
+
rgbd_images = []
|
1169 |
+
for idx, p in enumerate(prompts):
|
1170 |
+
image1, image2 = rgb_image[idx], depth_image[idx]
|
1171 |
+
|
1172 |
+
width1, height1 = image1.size
|
1173 |
+
width2, height2 = image2.size
|
1174 |
+
|
1175 |
+
font = ImageFont.load_default(size=20)
|
1176 |
+
text = p
|
1177 |
+
draw = ImageDraw.Draw(image1)
|
1178 |
+
text_bbox = draw.textbbox((0, 0), text, font=font)
|
1179 |
+
text_width = text_bbox[2] - text_bbox[0]
|
1180 |
+
text_height = text_bbox[3] - text_bbox[1]
|
1181 |
+
|
1182 |
+
new_image = Image.new('RGB', (width1 + width2, max(height1, height2) + text_height), (255, 255, 255))
|
1183 |
+
|
1184 |
+
text_x = (new_image.width - text_width) // 2
|
1185 |
+
text_y = 0
|
1186 |
+
draw = ImageDraw.Draw(new_image)
|
1187 |
+
draw.text((text_x, text_y), text, fill="black", font=font)
|
1188 |
+
|
1189 |
+
new_image.paste(image1, (0, text_height))
|
1190 |
+
new_image.paste(image2, (width1, text_height))
|
1191 |
+
|
1192 |
+
rgbd_images.append(pil_to_tensor(new_image))
|
1193 |
+
|
1194 |
+
return rgbd_images
|
marigold/marigold_xl_pipeline.py
ADDED
@@ -0,0 +1,1046 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Bingxin Ke, ETH Zurich. All rights reserved.
|
2 |
+
# Last modified: 2024-05-24
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
# --------------------------------------------------------------------------
|
16 |
+
# If you find this code useful, we kindly ask you to cite our paper in your work.
|
17 |
+
# Please find bibtex at: https://github.com/prs-eth/Marigold#-citation
|
18 |
+
# More information about the method can be found at https://marigoldmonodepth.github.io
|
19 |
+
# --------------------------------------------------------------------------
|
20 |
+
|
21 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
22 |
+
import logging
|
23 |
+
from diffusers.image_processor import VaeImageProcessor
|
24 |
+
import pdb
|
25 |
+
from typing import Dict, Optional, Union
|
26 |
+
import torchvision.transforms as transforms
|
27 |
+
import PIL.Image
|
28 |
+
import numpy as np
|
29 |
+
import torch
|
30 |
+
from diffusers import (
|
31 |
+
AutoencoderKL,
|
32 |
+
DDIMScheduler,
|
33 |
+
DiffusionPipeline,
|
34 |
+
LCMScheduler,
|
35 |
+
UNet2DConditionModel,
|
36 |
+
)
|
37 |
+
from .duplicate_unet import DoubleUNet2DConditionModel
|
38 |
+
import os
|
39 |
+
from torch.nn import Conv2d
|
40 |
+
from PIL import Image, ImageDraw, ImageFont
|
41 |
+
from torch.nn.parameter import Parameter
|
42 |
+
from diffusers.utils import BaseOutput
|
43 |
+
from PIL import Image
|
44 |
+
from torch.utils.data import DataLoader, TensorDataset
|
45 |
+
from torchvision.transforms import InterpolationMode
|
46 |
+
from torchvision.transforms.functional import pil_to_tensor, resize
|
47 |
+
from tqdm.auto import tqdm
|
48 |
+
from transformers import CLIPTextModel, CLIPTokenizer, CLIPTextModelWithProjection
|
49 |
+
|
50 |
+
from .util.batchsize import find_batch_size
|
51 |
+
from .util.ensemble import ensemble_depth
|
52 |
+
from .util.image_util import (
|
53 |
+
chw2hwc,
|
54 |
+
colorize_depth_maps,
|
55 |
+
get_tv_resample_method,
|
56 |
+
resize_max_res,
|
57 |
+
)
|
58 |
+
|
59 |
+
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
60 |
+
"""
|
61 |
+
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
62 |
+
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
63 |
+
"""
|
64 |
+
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
65 |
+
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
66 |
+
# rescale the results from guidance (fixes overexposure)
|
67 |
+
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
68 |
+
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
69 |
+
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
70 |
+
return noise_cfg
|
71 |
+
|
72 |
+
class MarigoldDepthOutput(BaseOutput):
|
73 |
+
"""
|
74 |
+
Output class for Marigold monocular depth prediction pipeline.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
depth_np (`np.ndarray`):
|
78 |
+
Predicted depth map, with depth values in the range of [0, 1].
|
79 |
+
depth_colored (`PIL.Image.Image`):
|
80 |
+
Colorized depth map, with the shape of [3, H, W] and values in [0, 1].
|
81 |
+
uncertainty (`None` or `np.ndarray`):
|
82 |
+
Uncalibrated uncertainty(MAD, median absolute deviation) coming from ensembling.
|
83 |
+
"""
|
84 |
+
|
85 |
+
depth_np: np.ndarray
|
86 |
+
depth_colored: Union[None, Image.Image]
|
87 |
+
uncertainty: Union[None, np.ndarray]
|
88 |
+
|
89 |
+
class MarigoldXLPipeline(DiffusionPipeline):
|
90 |
+
"""
|
91 |
+
Pipeline for monocular depth estimation using Marigold: https://marigoldmonodepth.github.io.
|
92 |
+
|
93 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
94 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
95 |
+
|
96 |
+
Args:
|
97 |
+
unet (`UNet2DConditionModel`):
|
98 |
+
Conditional U-Net to denoise the depth latent, conditioned on image latent.
|
99 |
+
vae (`AutoencoderKL`):
|
100 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images and depth maps
|
101 |
+
to and from latent representations.
|
102 |
+
scheduler (`DDIMScheduler`):
|
103 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents.
|
104 |
+
text_encoder (`CLIPTextModel`):
|
105 |
+
Text-encoder, for empty text embedding.
|
106 |
+
tokenizer (`CLIPTokenizer`):
|
107 |
+
CLIP tokenizer.
|
108 |
+
scale_invariant (`bool`, *optional*):
|
109 |
+
A model property specifying whether the predicted depth maps are scale-invariant. This value must be set in
|
110 |
+
the model config. When used together with the `shift_invariant=True` flag, the model is also called
|
111 |
+
"affine-invariant". NB: overriding this value is not supported.
|
112 |
+
shift_invariant (`bool`, *optional*):
|
113 |
+
A model property specifying whether the predicted depth maps are shift-invariant. This value must be set in
|
114 |
+
the model config. When used together with the `scale_invariant=True` flag, the model is also called
|
115 |
+
"affine-invariant". NB: overriding this value is not supported.
|
116 |
+
default_denoising_steps (`int`, *optional*):
|
117 |
+
The minimum number of denoising diffusion steps that are required to produce a prediction of reasonable
|
118 |
+
quality with the given model. This value must be set in the model config. When the pipeline is called
|
119 |
+
without explicitly setting `num_inference_steps`, the default value is used. This is required to ensure
|
120 |
+
reasonable results with various model flavors compatible with the pipeline, such as those relying on very
|
121 |
+
short denoising schedules (`LCMScheduler`) and those with full diffusion schedules (`DDIMScheduler`).
|
122 |
+
default_processing_resolution (`int`, *optional*):
|
123 |
+
The recommended value of the `processing_resolution` parameter of the pipeline. This value must be set in
|
124 |
+
the model config. When the pipeline is called without explicitly setting `processing_resolution`, the
|
125 |
+
default value is used. This is required to ensure reasonable results with various model flavors trained
|
126 |
+
with varying optimal processing resolution values.
|
127 |
+
"""
|
128 |
+
|
129 |
+
rgb_latent_scale_factor = 0.13025
|
130 |
+
depth_latent_scale_factor = 0.13025
|
131 |
+
|
132 |
+
def __init__(
|
133 |
+
self,
|
134 |
+
unet: DoubleUNet2DConditionModel,
|
135 |
+
vae: AutoencoderKL,
|
136 |
+
scheduler: Union[DDIMScheduler, LCMScheduler],
|
137 |
+
text_encoder: CLIPTextModel,
|
138 |
+
text_encoder_2: CLIPTextModelWithProjection,
|
139 |
+
tokenizer: CLIPTokenizer,
|
140 |
+
tokenizer_2: CLIPTokenizer,
|
141 |
+
scale_invariant: Optional[bool] = True,
|
142 |
+
shift_invariant: Optional[bool] = True,
|
143 |
+
default_denoising_steps: Optional[int] = None,
|
144 |
+
default_processing_resolution: Optional[int] = None,
|
145 |
+
requires_safety_checker: bool = False,
|
146 |
+
):
|
147 |
+
super().__init__()
|
148 |
+
|
149 |
+
self.register_modules(
|
150 |
+
vae=vae,
|
151 |
+
text_encoder=text_encoder,
|
152 |
+
text_encoder_2=text_encoder_2,
|
153 |
+
tokenizer=tokenizer,
|
154 |
+
tokenizer_2=tokenizer_2,
|
155 |
+
unet=unet,
|
156 |
+
scheduler=scheduler,
|
157 |
+
)
|
158 |
+
|
159 |
+
self.register_to_config(
|
160 |
+
scale_invariant=scale_invariant,
|
161 |
+
shift_invariant=shift_invariant,
|
162 |
+
default_denoising_steps=default_denoising_steps,
|
163 |
+
default_processing_resolution=default_processing_resolution,
|
164 |
+
)
|
165 |
+
|
166 |
+
self.scale_invariant = scale_invariant
|
167 |
+
self.shift_invariant = shift_invariant
|
168 |
+
self.default_denoising_steps = default_denoising_steps
|
169 |
+
self.default_processing_resolution = default_processing_resolution
|
170 |
+
|
171 |
+
self.empty_text_embed = None
|
172 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
173 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
174 |
+
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
175 |
+
self.separate_list = [3,1,3]
|
176 |
+
self.default_sample_size = self.unet.config.sample_size
|
177 |
+
|
178 |
+
@torch.no_grad()
|
179 |
+
def __call__(
|
180 |
+
self,
|
181 |
+
input_image: Union[Image.Image, torch.Tensor],
|
182 |
+
denoising_steps: Optional[int] = None,
|
183 |
+
ensemble_size: int = 5,
|
184 |
+
processing_res: Optional[int] = None,
|
185 |
+
match_input_res: bool = True,
|
186 |
+
resample_method: str = "bilinear",
|
187 |
+
batch_size: int = 0,
|
188 |
+
generator: Union[torch.Generator, None] = None,
|
189 |
+
color_map: str = "Spectral",
|
190 |
+
show_progress_bar: bool = True,
|
191 |
+
ensemble_kwargs: Dict = None,
|
192 |
+
) -> MarigoldDepthOutput:
|
193 |
+
"""
|
194 |
+
Function invoked when calling the pipeline.
|
195 |
+
|
196 |
+
Args:
|
197 |
+
input_image (`Image`):
|
198 |
+
Input RGB (or gray-scale) image.
|
199 |
+
denoising_steps (`int`, *optional*, defaults to `None`):
|
200 |
+
Number of denoising diffusion steps during inference. The default value `None` results in automatic
|
201 |
+
selection. The number of steps should be at least 10 with the full Marigold models, and between 1 and 4
|
202 |
+
for Marigold-LCM models.
|
203 |
+
ensemble_size (`int`, *optional*, defaults to `10`):
|
204 |
+
Number of predictions to be ensembled.
|
205 |
+
processing_res (`int`, *optional*, defaults to `None`):
|
206 |
+
Effective processing resolution. When set to `0`, processes at the original image resolution. This
|
207 |
+
produces crisper predictions, but may also lead to the overall loss of global context. The default
|
208 |
+
value `None` resolves to the optimal value from the model config.
|
209 |
+
match_input_res (`bool`, *optional*, defaults to `True`):
|
210 |
+
Resize depth prediction to match input resolution.
|
211 |
+
Only valid if `processing_res` > 0.
|
212 |
+
resample_method: (`str`, *optional*, defaults to `bilinear`):
|
213 |
+
Resampling method used to resize images and depth predictions. This can be one of `bilinear`, `bicubic` or `nearest`, defaults to: `bilinear`.
|
214 |
+
batch_size (`int`, *optional*, defaults to `0`):
|
215 |
+
Inference batch size, no bigger than `num_ensemble`.
|
216 |
+
If set to 0, the script will automatically decide the proper batch size.
|
217 |
+
generator (`torch.Generator`, *optional*, defaults to `None`)
|
218 |
+
Random generator for initial noise generation.
|
219 |
+
show_progress_bar (`bool`, *optional*, defaults to `True`):
|
220 |
+
Display a progress bar of diffusion denoising.
|
221 |
+
color_map (`str`, *optional*, defaults to `"Spectral"`, pass `None` to skip colorized depth map generation):
|
222 |
+
Colormap used to colorize the depth map.
|
223 |
+
scale_invariant (`str`, *optional*, defaults to `True`):
|
224 |
+
Flag of scale-invariant prediction, if True, scale will be adjusted from the raw prediction.
|
225 |
+
shift_invariant (`str`, *optional*, defaults to `True`):
|
226 |
+
Flag of shift-invariant prediction, if True, shift will be adjusted from the raw prediction, if False, near plane will be fixed at 0m.
|
227 |
+
ensemble_kwargs (`dict`, *optional*, defaults to `None`):
|
228 |
+
Arguments for detailed ensembling settings.
|
229 |
+
Returns:
|
230 |
+
`MarigoldDepthOutput`: Output class for Marigold monocular depth prediction pipeline, including:
|
231 |
+
- **depth_np** (`np.ndarray`) Predicted depth map, with depth values in the range of [0, 1]
|
232 |
+
- **depth_colored** (`PIL.Image.Image`) Colorized depth map, with the shape of [3, H, W] and values in [0, 1], None if `color_map` is `None`
|
233 |
+
- **uncertainty** (`None` or `np.ndarray`) Uncalibrated uncertainty(MAD, median absolute deviation)
|
234 |
+
coming from ensembling. None if `ensemble_size = 1`
|
235 |
+
"""
|
236 |
+
# Model-specific optimal default values leading to fast and reasonable results.
|
237 |
+
if denoising_steps is None:
|
238 |
+
denoising_steps = self.default_denoising_steps
|
239 |
+
if processing_res is None:
|
240 |
+
processing_res = self.default_processing_resolution
|
241 |
+
|
242 |
+
assert processing_res >= 0
|
243 |
+
assert ensemble_size >= 1
|
244 |
+
|
245 |
+
# Check if denoising step is reasonable
|
246 |
+
self._check_inference_step(denoising_steps)
|
247 |
+
|
248 |
+
resample_method: InterpolationMode = get_tv_resample_method(resample_method)
|
249 |
+
|
250 |
+
# ----------------- Image Preprocess -----------------
|
251 |
+
# Convert to torch tensor
|
252 |
+
if isinstance(input_image, Image.Image):
|
253 |
+
input_image = input_image.convert("RGB")
|
254 |
+
# convert to torch tensor [H, W, rgb] -> [rgb, H, W]
|
255 |
+
rgb = pil_to_tensor(input_image)
|
256 |
+
rgb = rgb.unsqueeze(0) # [1, rgb, H, W]
|
257 |
+
elif isinstance(input_image, torch.Tensor):
|
258 |
+
rgb = input_image
|
259 |
+
else:
|
260 |
+
raise TypeError(f"Unknown input type: {type(input_image) = }")
|
261 |
+
input_size = rgb.shape
|
262 |
+
assert (
|
263 |
+
4 == rgb.dim() and 3 == input_size[-3]
|
264 |
+
), f"Wrong input shape {input_size}, expected [1, rgb, H, W]"
|
265 |
+
|
266 |
+
# Resize image
|
267 |
+
if processing_res > 0:
|
268 |
+
rgb = resize_max_res(
|
269 |
+
rgb,
|
270 |
+
max_edge_resolution=processing_res,
|
271 |
+
resample_method=resample_method,
|
272 |
+
)
|
273 |
+
|
274 |
+
# Normalize rgb values
|
275 |
+
rgb_norm: torch.Tensor = rgb / 255.0 * 2.0 - 1.0 # [0, 255] -> [-1, 1]
|
276 |
+
rgb_norm = rgb_norm.to(self.dtype)
|
277 |
+
assert rgb_norm.min() >= -1.0 and rgb_norm.max() <= 1.0
|
278 |
+
|
279 |
+
# ----------------- Predicting depth -----------------
|
280 |
+
# Batch repeated input image
|
281 |
+
duplicated_rgb = rgb_norm.expand(ensemble_size, -1, -1, -1)
|
282 |
+
single_rgb_dataset = TensorDataset(duplicated_rgb)
|
283 |
+
if batch_size > 0:
|
284 |
+
_bs = batch_size
|
285 |
+
else:
|
286 |
+
_bs = find_batch_size(
|
287 |
+
ensemble_size=ensemble_size,
|
288 |
+
input_res=max(rgb_norm.shape[1:]),
|
289 |
+
dtype=self.dtype,
|
290 |
+
)
|
291 |
+
|
292 |
+
single_rgb_loader = DataLoader(
|
293 |
+
single_rgb_dataset, batch_size=_bs, shuffle=False
|
294 |
+
)
|
295 |
+
|
296 |
+
# Predict depth maps (batched)
|
297 |
+
depth_pred_ls = []
|
298 |
+
if show_progress_bar:
|
299 |
+
iterable = tqdm(
|
300 |
+
single_rgb_loader, desc=" " * 2 + "Inference batches", leave=False
|
301 |
+
)
|
302 |
+
else:
|
303 |
+
iterable = single_rgb_loader
|
304 |
+
for batch in iterable:
|
305 |
+
(batched_img,) = batch
|
306 |
+
depth_pred_raw = self.single_infer(
|
307 |
+
rgb_in=batched_img,
|
308 |
+
num_inference_steps=denoising_steps,
|
309 |
+
show_pbar=show_progress_bar,
|
310 |
+
generator=generator,
|
311 |
+
)
|
312 |
+
depth_pred_ls.append(depth_pred_raw.detach())
|
313 |
+
depth_preds = torch.concat(depth_pred_ls, dim=0)
|
314 |
+
torch.cuda.empty_cache() # clear vram cache for ensembling
|
315 |
+
|
316 |
+
# ----------------- Test-time ensembling -----------------
|
317 |
+
if ensemble_size > 1:
|
318 |
+
depth_pred, pred_uncert = ensemble_depth(
|
319 |
+
depth_preds,
|
320 |
+
scale_invariant=self.scale_invariant,
|
321 |
+
shift_invariant=self.shift_invariant,
|
322 |
+
max_res=50,
|
323 |
+
**(ensemble_kwargs or {}),
|
324 |
+
)
|
325 |
+
else:
|
326 |
+
depth_pred = depth_preds
|
327 |
+
pred_uncert = None
|
328 |
+
|
329 |
+
# Resize back to original resolution
|
330 |
+
if match_input_res:
|
331 |
+
depth_pred = resize(
|
332 |
+
depth_pred,
|
333 |
+
input_size[-2:],
|
334 |
+
interpolation=resample_method,
|
335 |
+
antialias=True,
|
336 |
+
)
|
337 |
+
|
338 |
+
# Convert to numpy
|
339 |
+
depth_pred = depth_pred.squeeze()
|
340 |
+
depth_pred = depth_pred.cpu().numpy()
|
341 |
+
if pred_uncert is not None:
|
342 |
+
pred_uncert = pred_uncert.squeeze().cpu().numpy()
|
343 |
+
|
344 |
+
# Clip output range
|
345 |
+
depth_pred = depth_pred.clip(0, 1)
|
346 |
+
|
347 |
+
# Colorize
|
348 |
+
if color_map is not None:
|
349 |
+
depth_colored = colorize_depth_maps(
|
350 |
+
depth_pred, 0, 1, cmap=color_map
|
351 |
+
).squeeze() # [3, H, W], value in (0, 1)
|
352 |
+
depth_colored = (depth_colored * 255).astype(np.uint8)
|
353 |
+
depth_colored_hwc = chw2hwc(depth_colored)
|
354 |
+
depth_colored_img = Image.fromarray(depth_colored_hwc)
|
355 |
+
else:
|
356 |
+
depth_colored_img = None
|
357 |
+
|
358 |
+
return MarigoldDepthOutput(
|
359 |
+
depth_np=depth_pred,
|
360 |
+
depth_colored=depth_colored_img,
|
361 |
+
uncertainty=pred_uncert,
|
362 |
+
)
|
363 |
+
|
364 |
+
def _replace_unet_conv_in(self):
|
365 |
+
# replace the first layer to accept 8 in_channels
|
366 |
+
_weight = self.unet.conv_in.weight.clone() # [320, 4, 3, 3]
|
367 |
+
_bias = self.unet.conv_in.bias.clone() # [320]
|
368 |
+
zero_weight = torch.zeros(_weight.shape).to(_weight.device)
|
369 |
+
_weight = torch.cat([_weight, zero_weight], dim=1)
|
370 |
+
# _weight = _weight.repeat((1, 2, 1, 1)) # Keep selected channel(s)
|
371 |
+
# half the activation magnitude
|
372 |
+
# _weight *= 0.5
|
373 |
+
# new conv_in channel
|
374 |
+
_n_convin_out_channel = self.unet.conv_in.out_channels
|
375 |
+
_new_conv_in = Conv2d(
|
376 |
+
8, _n_convin_out_channel, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
|
377 |
+
)
|
378 |
+
_new_conv_in.weight = Parameter(_weight)
|
379 |
+
_new_conv_in.bias = Parameter(_bias)
|
380 |
+
self.unet.conv_in = _new_conv_in
|
381 |
+
logging.info("Unet conv_in layer is replaced")
|
382 |
+
# replace config
|
383 |
+
self.unet.config["in_channels"] = 8
|
384 |
+
logging.info("Unet config is updated")
|
385 |
+
return
|
386 |
+
|
387 |
+
def _replace_unet_conv_out(self):
|
388 |
+
# replace the first layer to accept 8 in_channels
|
389 |
+
_weight = self.unet.conv_out.weight.clone() # [8, 320, 3, 3]
|
390 |
+
_bias = self.unet.conv_out.bias.clone() # [320]
|
391 |
+
_weight = _weight.repeat((2, 1, 1, 1)) # Keep selected channel(s)
|
392 |
+
_bias = _bias.repeat((2))
|
393 |
+
# half the activation magnitude
|
394 |
+
|
395 |
+
# new conv_in channel
|
396 |
+
_n_convin_out_channel = self.unet.conv_out.out_channels
|
397 |
+
_new_conv_out = Conv2d(
|
398 |
+
_n_convin_out_channel, 8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
|
399 |
+
)
|
400 |
+
_new_conv_out.weight = Parameter(_weight)
|
401 |
+
_new_conv_out.bias = Parameter(_bias)
|
402 |
+
self.unet.conv_out = _new_conv_out
|
403 |
+
logging.info("Unet conv_out layer is replaced")
|
404 |
+
# replace config
|
405 |
+
self.unet.config["out_channels"] = 8
|
406 |
+
logging.info("Unet config is updated")
|
407 |
+
return
|
408 |
+
|
409 |
+
def _check_inference_step(self, n_step: int) -> None:
|
410 |
+
"""
|
411 |
+
Check if denoising step is reasonable
|
412 |
+
Args:
|
413 |
+
n_step (`int`): denoising steps
|
414 |
+
"""
|
415 |
+
assert n_step >= 1
|
416 |
+
|
417 |
+
if isinstance(self.scheduler, DDIMScheduler):
|
418 |
+
if n_step < 10:
|
419 |
+
logging.warning(
|
420 |
+
f"Too few denoising steps: {n_step}. Recommended to use the LCM checkpoint for few-step inference."
|
421 |
+
)
|
422 |
+
elif isinstance(self.scheduler, LCMScheduler):
|
423 |
+
if not 1 <= n_step <= 4:
|
424 |
+
logging.warning(
|
425 |
+
f"Non-optimal setting of denoising steps: {n_step}. Recommended setting is 1-4 steps."
|
426 |
+
)
|
427 |
+
else:
|
428 |
+
raise RuntimeError(f"Unsupported scheduler type: {type(self.scheduler)}")
|
429 |
+
|
430 |
+
def encode_text(self, prompt):
|
431 |
+
"""
|
432 |
+
Encode text embedding for empty prompt
|
433 |
+
"""
|
434 |
+
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
|
435 |
+
text_encoders = (
|
436 |
+
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
|
437 |
+
)
|
438 |
+
prompts = [prompt, prompt]
|
439 |
+
prompt_embeds_list = []
|
440 |
+
|
441 |
+
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
|
442 |
+
text_inputs = tokenizer(
|
443 |
+
prompt,
|
444 |
+
padding="max_length",
|
445 |
+
max_length=tokenizer.model_max_length,
|
446 |
+
truncation=True,
|
447 |
+
return_tensors="pt",
|
448 |
+
)
|
449 |
+
|
450 |
+
text_input_ids = text_inputs.input_ids
|
451 |
+
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
452 |
+
|
453 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
454 |
+
text_input_ids, untruncated_ids
|
455 |
+
):
|
456 |
+
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1: -1])
|
457 |
+
print(
|
458 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
459 |
+
f" {tokenizer.model_max_length} tokens: {removed_text}"
|
460 |
+
)
|
461 |
+
|
462 |
+
prompt_embeds = text_encoder(text_input_ids.to(text_encoder.device), output_hidden_states=True)
|
463 |
+
|
464 |
+
pooled_prompt_embeds = prompt_embeds[0]
|
465 |
+
prompt_embeds = prompt_embeds.hidden_states[-2]
|
466 |
+
prompt_embeds_list.append(prompt_embeds)
|
467 |
+
|
468 |
+
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
469 |
+
|
470 |
+
return prompt_embeds, pooled_prompt_embeds
|
471 |
+
|
472 |
+
def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype):
|
473 |
+
add_time_ids = list(original_size + crops_coords_top_left + target_size)
|
474 |
+
|
475 |
+
passed_add_embed_dim = (
|
476 |
+
self.unet.config.addition_time_embed_dim * len(add_time_ids) + self.text_encoder_2.config.projection_dim
|
477 |
+
)
|
478 |
+
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
|
479 |
+
|
480 |
+
if expected_add_embed_dim != passed_add_embed_dim:
|
481 |
+
raise ValueError(
|
482 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
|
483 |
+
)
|
484 |
+
|
485 |
+
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
486 |
+
return add_time_ids
|
487 |
+
|
488 |
+
def numpy_to_pil(self, images: np.ndarray) -> PIL.Image.Image:
|
489 |
+
"""
|
490 |
+
Convert a numpy image or a batch of images to a PIL image.
|
491 |
+
"""
|
492 |
+
if images.ndim == 3:
|
493 |
+
images = images[None, ...]
|
494 |
+
images = (images * 255).round().astype("uint8")
|
495 |
+
if images.shape[-1] == 1:
|
496 |
+
# special case for grayscale (single channel) images
|
497 |
+
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
|
498 |
+
else:
|
499 |
+
pil_images = [Image.fromarray(image) for image in images]
|
500 |
+
|
501 |
+
return pil_images
|
502 |
+
|
503 |
+
@torch.no_grad()
|
504 |
+
def generate_rgbd(
|
505 |
+
self,
|
506 |
+
prompt: str or list,
|
507 |
+
num_inference_steps: int,
|
508 |
+
generator: Union[torch.Generator, None],
|
509 |
+
show_pbar: bool = None,
|
510 |
+
negative_prompt: str or list = '',
|
511 |
+
color_map: str = "Spectral",
|
512 |
+
height: int = 1024,
|
513 |
+
width: int = 1024,
|
514 |
+
guidance_scale: float = 5.5
|
515 |
+
):
|
516 |
+
"""
|
517 |
+
Perform an individual depth prediction without ensembling.
|
518 |
+
|
519 |
+
Args:
|
520 |
+
rgb_in (`torch.Tensor`):
|
521 |
+
Input RGB image.
|
522 |
+
num_inference_steps (`int`):
|
523 |
+
Number of diffusion denoisign steps (DDIM) during inference.
|
524 |
+
show_pbar (`bool`):
|
525 |
+
Display a progress bar of diffusion denoising.
|
526 |
+
generator (`torch.Generator`)
|
527 |
+
Random generator for initial noise generation.
|
528 |
+
Returns:
|
529 |
+
`torch.Tensor`: Predicted depth map.
|
530 |
+
"""
|
531 |
+
device = self.device
|
532 |
+
ori_type = self.dtype
|
533 |
+
|
534 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
535 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
536 |
+
|
537 |
+
original_size = (height, width)
|
538 |
+
target_size = (height, width)
|
539 |
+
|
540 |
+
# Set timesteps
|
541 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
542 |
+
timesteps = self.scheduler.timesteps # [T]
|
543 |
+
|
544 |
+
# prepare text embeddings
|
545 |
+
if isinstance(prompt, list):
|
546 |
+
bs = len(prompt)
|
547 |
+
batch_text_embed = []
|
548 |
+
batch_pooled_text_embed = []
|
549 |
+
for p in prompt:
|
550 |
+
prompt_embed, pooled_prompt_embed = self.encode_text(p)
|
551 |
+
batch_text_embed.append(prompt_embed)
|
552 |
+
batch_pooled_text_embed.append(pooled_prompt_embed)
|
553 |
+
batch_text_embed = torch.cat(batch_text_embed, dim=0)
|
554 |
+
batch_pooled_text_embed = torch.cat(batch_pooled_text_embed, dim=0)
|
555 |
+
elif isinstance(prompt, str):
|
556 |
+
bs = 1
|
557 |
+
batch_text_embed, batch_pooled_text_embed = self.encode_text(prompt)
|
558 |
+
else:
|
559 |
+
raise NotImplementedError
|
560 |
+
|
561 |
+
batch_empty_text_embed = torch.zeros_like(batch_text_embed).to(device) # [B, 77, d]
|
562 |
+
batch_pooled_empty_text_embed = torch.zeros_like(batch_pooled_text_embed).to(device)
|
563 |
+
|
564 |
+
# prepare added time ids & embeddings
|
565 |
+
add_time_ids = self._get_add_time_ids(
|
566 |
+
original_size, (0, 0), target_size, dtype=batch_text_embed.dtype
|
567 |
+
)
|
568 |
+
negative_add_time_ids = add_time_ids
|
569 |
+
|
570 |
+
prompt_embeds = torch.cat([batch_empty_text_embed, batch_text_embed], dim=0)
|
571 |
+
add_text_embeds = torch.cat([batch_pooled_empty_text_embed, batch_pooled_text_embed], dim=0)
|
572 |
+
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
|
573 |
+
|
574 |
+
prompt_embeds = prompt_embeds.to(device).to(torch.bfloat16)
|
575 |
+
add_text_embeds = add_text_embeds.to(device).to(torch.bfloat16)
|
576 |
+
add_time_ids = add_time_ids.to(device).repeat(bs, 1)
|
577 |
+
|
578 |
+
# Initial depth map (noise)
|
579 |
+
cat_latent = torch.randn(
|
580 |
+
[bs, self.unet.config["in_channels"], height // self.vae_scale_factor, width // self.vae_scale_factor],
|
581 |
+
device=device,
|
582 |
+
dtype=torch.bfloat16,
|
583 |
+
generator=generator,
|
584 |
+
) # [B, 8, h, w]
|
585 |
+
cat_latent = cat_latent * self.scheduler.init_noise_sigma
|
586 |
+
|
587 |
+
# Denoising loop
|
588 |
+
if show_pbar:
|
589 |
+
iterable = tqdm(
|
590 |
+
enumerate(timesteps),
|
591 |
+
total=len(timesteps),
|
592 |
+
leave=False,
|
593 |
+
desc=" " * 4 + "Diffusion denoising",
|
594 |
+
)
|
595 |
+
else:
|
596 |
+
iterable = enumerate(timesteps)
|
597 |
+
|
598 |
+
self.to(torch.bfloat16)
|
599 |
+
|
600 |
+
for i, t in iterable:
|
601 |
+
latent_model_input = torch.cat([cat_latent] * 2)
|
602 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
603 |
+
|
604 |
+
# predict the noise residual
|
605 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
606 |
+
with torch.no_grad():
|
607 |
+
noise_pred = self.unet(
|
608 |
+
latent_model_input,
|
609 |
+
t,
|
610 |
+
t,
|
611 |
+
encoder_hidden_states=prompt_embeds,
|
612 |
+
added_cond_kwargs=added_cond_kwargs,
|
613 |
+
separate_list=self.separate_list,
|
614 |
+
return_dict=False,
|
615 |
+
)[0]
|
616 |
+
|
617 |
+
# perform guidance
|
618 |
+
guidance_scale = guidance_scale
|
619 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
620 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
621 |
+
|
622 |
+
# compute the previous noisy sample x_t -> x_t-1
|
623 |
+
cat_latent = self.scheduler.step(noise_pred, t, cat_latent, generator=generator).prev_sample
|
624 |
+
|
625 |
+
# self.unet.to(default_dtype)
|
626 |
+
# cat_latent.to(default_dtype)
|
627 |
+
image = self.decode_image(cat_latent[:, 0:4, :, :])
|
628 |
+
image = self.numpy_to_pil(image)
|
629 |
+
|
630 |
+
depth = self.decode_depth(cat_latent[:, 4:, :, :])
|
631 |
+
depth = torch.clip(depth, -1.0, 1.0)
|
632 |
+
depth = (depth + 1.0) / 2.0
|
633 |
+
depth_pred = depth.squeeze()
|
634 |
+
depth_pred = depth_pred.float().cpu().numpy()
|
635 |
+
depth_pred = depth_pred.clip(0, 1)
|
636 |
+
|
637 |
+
# Colorize
|
638 |
+
if color_map is not None:
|
639 |
+
depth_colored_img = []
|
640 |
+
depth_colored = colorize_depth_maps(
|
641 |
+
depth_pred, 0, 1, cmap=color_map
|
642 |
+
).squeeze() # [3, H, W], value in (0, 1)
|
643 |
+
depth_colored_img = self.numpy_to_pil(np.transpose(depth_colored, (0, 2, 3, 1)))
|
644 |
+
else:
|
645 |
+
depth_colored_img = None
|
646 |
+
|
647 |
+
rgbd_images = self.post_process_rgbd(prompt, image, depth_colored_img)
|
648 |
+
self.to(ori_type)
|
649 |
+
|
650 |
+
return rgbd_images
|
651 |
+
|
652 |
+
@torch.no_grad()
|
653 |
+
def image2depth(self,
|
654 |
+
input_image: Union[Image.Image, torch.Tensor],
|
655 |
+
denoising_steps: Optional[int] = None,
|
656 |
+
ensemble_size: int = 5,
|
657 |
+
processing_res: Optional[int] = None,
|
658 |
+
match_input_res: bool = True,
|
659 |
+
resample_method: str = "bilinear",
|
660 |
+
batch_size: int = 0,
|
661 |
+
generator: Union[torch.Generator, None] = None,
|
662 |
+
color_map: str = "Spectral",
|
663 |
+
show_progress_bar: bool = True,
|
664 |
+
ensemble_kwargs: Dict = None,
|
665 |
+
):
|
666 |
+
# Model-specific optimal default values leading to fast and reasonable results.
|
667 |
+
if denoising_steps is None:
|
668 |
+
denoising_steps = self.default_denoising_steps
|
669 |
+
if processing_res is None:
|
670 |
+
processing_res = self.default_processing_resolution
|
671 |
+
|
672 |
+
ori_type = self.dtype
|
673 |
+
self.to(torch.bfloat16)
|
674 |
+
|
675 |
+
assert processing_res >= 0
|
676 |
+
assert ensemble_size >= 1
|
677 |
+
|
678 |
+
# Check if denoising step is reasonable
|
679 |
+
self._check_inference_step(denoising_steps)
|
680 |
+
|
681 |
+
resample_method: InterpolationMode = get_tv_resample_method(resample_method)
|
682 |
+
|
683 |
+
# ----------------- Image Preprocess -----------------
|
684 |
+
# Convert to torch tensor
|
685 |
+
if isinstance(input_image, Image.Image):
|
686 |
+
input_image = input_image.convert("RGB")
|
687 |
+
# convert to torch tensor [H, W, rgb] -> [rgb, H, W]
|
688 |
+
rgb = pil_to_tensor(input_image)
|
689 |
+
rgb = rgb.unsqueeze(0) # [1, rgb, H, W]
|
690 |
+
elif isinstance(input_image, torch.Tensor):
|
691 |
+
rgb = input_image
|
692 |
+
else:
|
693 |
+
raise TypeError(f"Unknown input type: {type(input_image) = }")
|
694 |
+
input_size = rgb.shape
|
695 |
+
assert (
|
696 |
+
4 == rgb.dim() and 3 == input_size[-3]
|
697 |
+
), f"Wrong input shape {input_size}, expected [1, rgb, H, W]"
|
698 |
+
|
699 |
+
# Resize image
|
700 |
+
if processing_res > 0:
|
701 |
+
rgb = resize_max_res(
|
702 |
+
rgb,
|
703 |
+
max_edge_resolution=processing_res,
|
704 |
+
resample_method=resample_method,
|
705 |
+
)
|
706 |
+
|
707 |
+
# Normalize rgb values
|
708 |
+
rgb_norm: torch.Tensor = rgb / 255.0 * 2.0 - 1.0 # [0, 255] -> [-1, 1]
|
709 |
+
rgb_norm = rgb_norm.to(self.dtype)
|
710 |
+
assert rgb_norm.min() >= -1.0 and rgb_norm.max() <= 1.0
|
711 |
+
|
712 |
+
# ----------------- Predicting depth -----------------
|
713 |
+
# Batch repeated input image
|
714 |
+
duplicated_rgb = rgb_norm.expand(ensemble_size, -1, -1, -1)
|
715 |
+
single_rgb_dataset = TensorDataset(duplicated_rgb)
|
716 |
+
if batch_size > 0:
|
717 |
+
_bs = batch_size
|
718 |
+
else:
|
719 |
+
_bs = find_batch_size(
|
720 |
+
ensemble_size=ensemble_size,
|
721 |
+
input_res=max(rgb_norm.shape[1:]),
|
722 |
+
dtype=self.dtype,
|
723 |
+
)
|
724 |
+
|
725 |
+
single_rgb_loader = DataLoader(
|
726 |
+
single_rgb_dataset, batch_size=_bs, shuffle=False
|
727 |
+
)
|
728 |
+
|
729 |
+
# Predict depth maps (batched)
|
730 |
+
depth_pred_ls = []
|
731 |
+
if show_progress_bar:
|
732 |
+
iterable = tqdm(
|
733 |
+
single_rgb_loader, desc=" " * 2 + "Inference batches", leave=False
|
734 |
+
)
|
735 |
+
else:
|
736 |
+
iterable = single_rgb_loader
|
737 |
+
for batch in iterable:
|
738 |
+
(batched_img,) = batch
|
739 |
+
depth_pred_raw = self.single_image2depth(
|
740 |
+
rgb_in=batched_img,
|
741 |
+
num_inference_steps=denoising_steps,
|
742 |
+
show_pbar=show_progress_bar,
|
743 |
+
generator=generator,
|
744 |
+
)
|
745 |
+
depth_pred_ls.append(depth_pred_raw.detach())
|
746 |
+
depth_preds = torch.concat(depth_pred_ls, dim=0)
|
747 |
+
torch.cuda.empty_cache() # clear vram cache for ensembling
|
748 |
+
depth_preds = depth_preds.to(torch.float32)
|
749 |
+
# ----------------- Test-time ensembling -----------------
|
750 |
+
if ensemble_size > 1:
|
751 |
+
depth_pred, pred_uncert = ensemble_depth(
|
752 |
+
depth_preds,
|
753 |
+
scale_invariant=self.scale_invariant,
|
754 |
+
shift_invariant=self.shift_invariant,
|
755 |
+
max_res=50,
|
756 |
+
**(ensemble_kwargs or {}),
|
757 |
+
)
|
758 |
+
else:
|
759 |
+
depth_pred = depth_preds
|
760 |
+
pred_uncert = None
|
761 |
+
|
762 |
+
# Resize back to original resolution
|
763 |
+
if match_input_res:
|
764 |
+
depth_pred = resize(
|
765 |
+
depth_pred,
|
766 |
+
input_size[-2:],
|
767 |
+
interpolation=resample_method,
|
768 |
+
antialias=True,
|
769 |
+
)
|
770 |
+
|
771 |
+
# Convert to numpy
|
772 |
+
depth_pred = depth_pred.squeeze()
|
773 |
+
depth_pred = depth_pred.cpu().numpy()
|
774 |
+
if pred_uncert is not None:
|
775 |
+
pred_uncert = pred_uncert.squeeze().cpu().numpy()
|
776 |
+
|
777 |
+
# Clip output range
|
778 |
+
depth_pred = depth_pred.clip(0, 1)
|
779 |
+
|
780 |
+
# Colorize
|
781 |
+
if color_map is not None:
|
782 |
+
depth_colored = colorize_depth_maps(
|
783 |
+
depth_pred, 0, 1, cmap=color_map
|
784 |
+
).squeeze() # [3, H, W], value in (0, 1)
|
785 |
+
depth_colored = (depth_colored * 255).astype(np.uint8)
|
786 |
+
depth_colored_hwc = chw2hwc(depth_colored)
|
787 |
+
depth_colored_img = Image.fromarray(depth_colored_hwc)
|
788 |
+
else:
|
789 |
+
depth_colored_img = None
|
790 |
+
|
791 |
+
self.to(ori_type)
|
792 |
+
|
793 |
+
return MarigoldDepthOutput(
|
794 |
+
depth_np=depth_pred,
|
795 |
+
depth_colored=depth_colored_img,
|
796 |
+
uncertainty=pred_uncert,
|
797 |
+
)
|
798 |
+
|
799 |
+
@torch.no_grad()
|
800 |
+
def single_image2depth(
|
801 |
+
self,
|
802 |
+
rgb_in: torch.Tensor,
|
803 |
+
num_inference_steps: int,
|
804 |
+
generator: Union[torch.Generator, None],
|
805 |
+
show_pbar: bool
|
806 |
+
) -> torch.Tensor:
|
807 |
+
"""
|
808 |
+
Perform an individual depth prediction without ensembling.
|
809 |
+
|
810 |
+
Args:
|
811 |
+
rgb_in (`torch.Tensor`):
|
812 |
+
Input RGB image.
|
813 |
+
num_inference_steps (`int`):
|
814 |
+
Number of diffusion denoisign steps (DDIM) during inference.
|
815 |
+
show_pbar (`bool`):
|
816 |
+
Display a progress bar of diffusion denoising.
|
817 |
+
generator (`torch.Generator`)
|
818 |
+
Random generator for initial noise generation.
|
819 |
+
Returns:
|
820 |
+
`torch.Tensor`: Predicted depth map.
|
821 |
+
"""
|
822 |
+
device = self.device
|
823 |
+
rgb_in = rgb_in.to(device)
|
824 |
+
|
825 |
+
# Set timesteps
|
826 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
827 |
+
timesteps = self.scheduler.timesteps # [T]
|
828 |
+
# Encode image
|
829 |
+
rgb_latent = self.encode_rgb(rgb_in)
|
830 |
+
|
831 |
+
# Initial depth map (noise)
|
832 |
+
depth_latent = torch.randn(
|
833 |
+
rgb_latent.shape,
|
834 |
+
device=device,
|
835 |
+
dtype=self.dtype,
|
836 |
+
generator=generator,
|
837 |
+
) # [B, 4, h, w]
|
838 |
+
|
839 |
+
# Batched empty text embedding
|
840 |
+
if self.empty_text_embed is None:
|
841 |
+
self.encode_empty_text()
|
842 |
+
batch_empty_text_embed = self.empty_text_embed.repeat(
|
843 |
+
(rgb_latent.shape[0], 1, 1)
|
844 |
+
).to(device).to(self.dtype) # [B, 2, 1024]
|
845 |
+
|
846 |
+
# Denoising loop
|
847 |
+
if show_pbar:
|
848 |
+
iterable = tqdm(
|
849 |
+
enumerate(timesteps),
|
850 |
+
total=len(timesteps),
|
851 |
+
leave=False,
|
852 |
+
desc=" " * 4 + "Diffusion denoising",
|
853 |
+
)
|
854 |
+
else:
|
855 |
+
iterable = enumerate(timesteps)
|
856 |
+
|
857 |
+
for i, t in iterable:
|
858 |
+
unet_input = torch.cat(
|
859 |
+
[rgb_latent, depth_latent], dim=1
|
860 |
+
) # this order is important
|
861 |
+
# predict the noise residual
|
862 |
+
noise_pred = self.unet(
|
863 |
+
unet_input, rgb_timestep=0, depth_timestep=t, encoder_hidden_states=batch_empty_text_embed
|
864 |
+
).sample # [B, 4, h, w]
|
865 |
+
|
866 |
+
# compute the previous noisy sample x_t -> x_t-1
|
867 |
+
depth_latent = self.scheduler.step(
|
868 |
+
noise_pred[:, 4:, :, :], t, depth_latent, generator=generator
|
869 |
+
).prev_sample
|
870 |
+
|
871 |
+
depth = self.decode_depth(depth_latent)
|
872 |
+
|
873 |
+
# clip prediction
|
874 |
+
depth = torch.clip(depth, -1.0, 1.0)
|
875 |
+
# shift to [0, 1]
|
876 |
+
depth = (depth + 1.0) / 2.0
|
877 |
+
|
878 |
+
return depth
|
879 |
+
|
880 |
+
def single_depth2image(
|
881 |
+
self,
|
882 |
+
depth_in: torch.Tensor,
|
883 |
+
prompt,
|
884 |
+
num_inference_steps: int,
|
885 |
+
generator: Union[torch.Generator, None],
|
886 |
+
show_pbar: bool
|
887 |
+
) -> torch.Tensor:
|
888 |
+
"""
|
889 |
+
Perform an individual depth prediction without ensembling.
|
890 |
+
|
891 |
+
Args:
|
892 |
+
rgb_in (`torch.Tensor`):
|
893 |
+
Input RGB image.
|
894 |
+
num_inference_steps (`int`):
|
895 |
+
Number of diffusion denoisign steps (DDIM) during inference.
|
896 |
+
show_pbar (`bool`):
|
897 |
+
Display a progress bar of diffusion denoising.
|
898 |
+
generator (`torch.Generator`)
|
899 |
+
Random generator for initial noise generation.
|
900 |
+
Returns:
|
901 |
+
`torch.Tensor`: Predicted depth map.
|
902 |
+
"""
|
903 |
+
device = self.device
|
904 |
+
|
905 |
+
depth_in = depth_in.to(device)
|
906 |
+
|
907 |
+
# Set timesteps
|
908 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
909 |
+
timesteps = self.scheduler.timesteps # [T]
|
910 |
+
|
911 |
+
# Encode depth
|
912 |
+
depth_latent = self.encode_rgb(depth_in)
|
913 |
+
|
914 |
+
# Initial rgb map (noise)
|
915 |
+
rgb_latent = torch.randn(
|
916 |
+
depth_latent.shape,
|
917 |
+
device=device,
|
918 |
+
dtype=self.dtype,
|
919 |
+
generator=generator,
|
920 |
+
) # [B, 4, h, w]
|
921 |
+
|
922 |
+
# encode text
|
923 |
+
prompt_embed, pooled_prompt_embed = self.model.encode_text(prompt)
|
924 |
+
|
925 |
+
# Denoising loop
|
926 |
+
if show_pbar:
|
927 |
+
iterable = tqdm(
|
928 |
+
enumerate(timesteps),
|
929 |
+
total=len(timesteps),
|
930 |
+
leave=False,
|
931 |
+
desc=" " * 4 + "Diffusion denoising",
|
932 |
+
)
|
933 |
+
else:
|
934 |
+
iterable = enumerate(timesteps)
|
935 |
+
|
936 |
+
for i, t in iterable:
|
937 |
+
unet_input = torch.cat(
|
938 |
+
[rgb_latent, depth_latent], dim=1
|
939 |
+
) # this order is important
|
940 |
+
|
941 |
+
# predict the noise residual
|
942 |
+
noise_pred = self.unet(
|
943 |
+
unet_input, rgb_timestep=t, depth_timestep=0, encoder_hidden_states=batch_text_embed
|
944 |
+
).sample # [B, 4, h, w]
|
945 |
+
|
946 |
+
# compute the previous noisy sample x_t -> x_t-1
|
947 |
+
rgb_latent = self.scheduler.step(
|
948 |
+
noise_pred[:, 0:4, :, :], t, rgb_latent, generator=generator
|
949 |
+
).prev_sample
|
950 |
+
|
951 |
+
image = self.decode_image(rgb_latent)
|
952 |
+
|
953 |
+
return image
|
954 |
+
|
955 |
+
def encode_rgb(self, rgb_in: torch.Tensor) -> torch.Tensor:
|
956 |
+
"""
|
957 |
+
Encode RGB image into latent.
|
958 |
+
|
959 |
+
Args:
|
960 |
+
rgb_in (`torch.Tensor`):
|
961 |
+
Input RGB image to be encoded.
|
962 |
+
|
963 |
+
Returns:
|
964 |
+
`torch.Tensor`: Image latent.
|
965 |
+
"""
|
966 |
+
# encode
|
967 |
+
h = self.vae.encoder(rgb_in)
|
968 |
+
moments = self.vae.quant_conv(h)
|
969 |
+
mean, logvar = torch.chunk(moments, 2, dim=1)
|
970 |
+
# scale latent
|
971 |
+
rgb_latent = mean * self.rgb_latent_scale_factor
|
972 |
+
return rgb_latent
|
973 |
+
|
974 |
+
def encode_depth(self, depth_in: torch.Tensor) -> torch.Tensor:
|
975 |
+
"""
|
976 |
+
Encode RGB image into latent.
|
977 |
+
|
978 |
+
Args:
|
979 |
+
rgb_in (`torch.Tensor`):
|
980 |
+
Input RGB image to be encoded.
|
981 |
+
|
982 |
+
Returns:
|
983 |
+
`torch.Tensor`: Image latent.
|
984 |
+
"""
|
985 |
+
# encode
|
986 |
+
h = self.vae.encoder(depth_in)
|
987 |
+
moments = self.vae.quant_conv(h)
|
988 |
+
mean, logvar = torch.chunk(moments, 2, dim=1)
|
989 |
+
# scale latent
|
990 |
+
rgb_latent = mean * self.rgb_latent_scale_factor
|
991 |
+
return rgb_latent
|
992 |
+
|
993 |
+
def decode_image(self, latents):
|
994 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
995 |
+
image = self.image_processor.postprocess(image, output_type='np')
|
996 |
+
return image
|
997 |
+
|
998 |
+
def decode_depth(self, depth_latent: torch.Tensor) -> torch.Tensor:
|
999 |
+
"""
|
1000 |
+
Decode depth latent into depth map.
|
1001 |
+
|
1002 |
+
Args:
|
1003 |
+
depth_latent (`torch.Tensor`):
|
1004 |
+
Depth latent to be decoded.
|
1005 |
+
|
1006 |
+
Returns:
|
1007 |
+
`torch.Tensor`: Decoded depth map.
|
1008 |
+
"""
|
1009 |
+
# scale latent
|
1010 |
+
depth_latent = depth_latent / self.depth_latent_scale_factor
|
1011 |
+
# decode
|
1012 |
+
z = self.vae.post_quant_conv(depth_latent)
|
1013 |
+
stacked = self.vae.decoder(z)
|
1014 |
+
# mean of output channels
|
1015 |
+
depth_mean = stacked.mean(dim=1, keepdim=True)
|
1016 |
+
return depth_mean
|
1017 |
+
|
1018 |
+
def post_process_rgbd(self, prompts, rgb_image, depth_image):
|
1019 |
+
|
1020 |
+
rgbd_images = []
|
1021 |
+
for idx, p in enumerate(prompts):
|
1022 |
+
image1, image2 = rgb_image[idx], depth_image[idx]
|
1023 |
+
|
1024 |
+
width1, height1 = image1.size
|
1025 |
+
width2, height2 = image2.size
|
1026 |
+
|
1027 |
+
font = ImageFont.load_default(size=20)
|
1028 |
+
text = p
|
1029 |
+
draw = ImageDraw.Draw(image1)
|
1030 |
+
text_bbox = draw.textbbox((0, 0), text, font=font)
|
1031 |
+
text_width = text_bbox[2] - text_bbox[0]
|
1032 |
+
text_height = text_bbox[3] - text_bbox[1]
|
1033 |
+
|
1034 |
+
new_image = Image.new('RGB', (width1 + width2, max(height1, height2) + text_height), (255, 255, 255))
|
1035 |
+
|
1036 |
+
text_x = (new_image.width - text_width) // 2
|
1037 |
+
text_y = 0
|
1038 |
+
draw = ImageDraw.Draw(new_image)
|
1039 |
+
draw.text((text_x, text_y), text, fill="black", font=font)
|
1040 |
+
|
1041 |
+
new_image.paste(image1, (0, text_height))
|
1042 |
+
new_image.paste(image2, (width1, text_height))
|
1043 |
+
|
1044 |
+
rgbd_images.append(pil_to_tensor(new_image))
|
1045 |
+
|
1046 |
+
return rgbd_images
|
marigold/pipeline_stable_diffusion_inpaint.py
ADDED
@@ -0,0 +1,1068 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import inspect
|
16 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
17 |
+
|
18 |
+
import numpy as np
|
19 |
+
import PIL.Image
|
20 |
+
import torch
|
21 |
+
from packaging import version
|
22 |
+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
23 |
+
|
24 |
+
from diffusers.configuration_utils import FrozenDict
|
25 |
+
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
26 |
+
from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
|
27 |
+
from diffusers.models import AsymmetricAutoencoderKL, AutoencoderKL, UNet2DConditionModel
|
28 |
+
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
29 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
30 |
+
from diffusers.utils import deprecate, logging, scale_lora_layers, unscale_lora_layers
|
31 |
+
from diffusers.utils.torch_utils import randn_tensor
|
32 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
33 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
34 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
35 |
+
|
36 |
+
|
37 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
38 |
+
|
39 |
+
|
40 |
+
def prepare_mask_and_masked_image(image, mask, height, width, return_image: bool = False):
|
41 |
+
"""
|
42 |
+
Prepares a pair (image, mask) to be consumed by the Stable Diffusion pipeline. This means that those inputs will be
|
43 |
+
converted to ``torch.Tensor`` with shapes ``batch x channels x height x width`` where ``channels`` is ``3`` for the
|
44 |
+
``image`` and ``1`` for the ``mask``.
|
45 |
+
|
46 |
+
The ``image`` will be converted to ``torch.float32`` and normalized to be in ``[-1, 1]``. The ``mask`` will be
|
47 |
+
binarized (``mask > 0.5``) and cast to ``torch.float32`` too.
|
48 |
+
|
49 |
+
Args:
|
50 |
+
image (Union[np.array, PIL.Image, torch.Tensor]): The image to inpaint.
|
51 |
+
It can be a ``PIL.Image``, or a ``height x width x 3`` ``np.array`` or a ``channels x height x width``
|
52 |
+
``torch.Tensor`` or a ``batch x channels x height x width`` ``torch.Tensor``.
|
53 |
+
mask (_type_): The mask to apply to the image, i.e. regions to inpaint.
|
54 |
+
It can be a ``PIL.Image``, or a ``height x width`` ``np.array`` or a ``1 x height x width``
|
55 |
+
``torch.Tensor`` or a ``batch x 1 x height x width`` ``torch.Tensor``.
|
56 |
+
|
57 |
+
|
58 |
+
Raises:
|
59 |
+
ValueError: ``torch.Tensor`` images should be in the ``[-1, 1]`` range. ValueError: ``torch.Tensor`` mask
|
60 |
+
should be in the ``[0, 1]`` range. ValueError: ``mask`` and ``image`` should have the same spatial dimensions.
|
61 |
+
TypeError: ``mask`` is a ``torch.Tensor`` but ``image`` is not
|
62 |
+
(ot the other way around).
|
63 |
+
|
64 |
+
Returns:
|
65 |
+
tuple[torch.Tensor]: The pair (mask, masked_image) as ``torch.Tensor`` with 4
|
66 |
+
dimensions: ``batch x channels x height x width``.
|
67 |
+
"""
|
68 |
+
deprecation_message = "The prepare_mask_and_masked_image method is deprecated and will be removed in a future version. Please use VaeImageProcessor.preprocess instead"
|
69 |
+
deprecate(
|
70 |
+
"prepare_mask_and_masked_image",
|
71 |
+
"0.30.0",
|
72 |
+
deprecation_message,
|
73 |
+
)
|
74 |
+
if image is None:
|
75 |
+
raise ValueError("`image` input cannot be undefined.")
|
76 |
+
|
77 |
+
if mask is None:
|
78 |
+
raise ValueError("`mask_image` input cannot be undefined.")
|
79 |
+
|
80 |
+
if isinstance(image, torch.Tensor):
|
81 |
+
if not isinstance(mask, torch.Tensor):
|
82 |
+
raise TypeError(f"`image` is a torch.Tensor but `mask` (type: {type(mask)} is not")
|
83 |
+
|
84 |
+
# Batch single image
|
85 |
+
if image.ndim == 3:
|
86 |
+
assert image.shape[0] == 3, "Image outside a batch should be of shape (3, H, W)"
|
87 |
+
image = image.unsqueeze(0)
|
88 |
+
|
89 |
+
# Batch and add channel dim for single mask
|
90 |
+
if mask.ndim == 2:
|
91 |
+
mask = mask.unsqueeze(0).unsqueeze(0)
|
92 |
+
|
93 |
+
# Batch single mask or add channel dim
|
94 |
+
if mask.ndim == 3:
|
95 |
+
# Single batched mask, no channel dim or single mask not batched but channel dim
|
96 |
+
if mask.shape[0] == 1:
|
97 |
+
mask = mask.unsqueeze(0)
|
98 |
+
|
99 |
+
# Batched masks no channel dim
|
100 |
+
else:
|
101 |
+
mask = mask.unsqueeze(1)
|
102 |
+
|
103 |
+
assert image.ndim == 4 and mask.ndim == 4, "Image and Mask must have 4 dimensions"
|
104 |
+
assert image.shape[-2:] == mask.shape[-2:], "Image and Mask must have the same spatial dimensions"
|
105 |
+
assert image.shape[0] == mask.shape[0], "Image and Mask must have the same batch size"
|
106 |
+
|
107 |
+
# Check image is in [-1, 1]
|
108 |
+
if image.min() < -1 or image.max() > 1:
|
109 |
+
raise ValueError("Image should be in [-1, 1] range")
|
110 |
+
|
111 |
+
# Check mask is in [0, 1]
|
112 |
+
if mask.min() < 0 or mask.max() > 1:
|
113 |
+
raise ValueError("Mask should be in [0, 1] range")
|
114 |
+
|
115 |
+
# Binarize mask
|
116 |
+
mask[mask < 0.5] = 0
|
117 |
+
mask[mask >= 0.5] = 1
|
118 |
+
|
119 |
+
# Image as float32
|
120 |
+
image = image.to(dtype=torch.float32)
|
121 |
+
elif isinstance(mask, torch.Tensor):
|
122 |
+
raise TypeError(f"`mask` is a torch.Tensor but `image` (type: {type(image)} is not")
|
123 |
+
else:
|
124 |
+
# preprocess image
|
125 |
+
if isinstance(image, (PIL.Image.Image, np.ndarray)):
|
126 |
+
image = [image]
|
127 |
+
if isinstance(image, list) and isinstance(image[0], PIL.Image.Image):
|
128 |
+
# resize all images w.r.t passed height an width
|
129 |
+
image = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in image]
|
130 |
+
image = [np.array(i.convert("RGB"))[None, :] for i in image]
|
131 |
+
image = np.concatenate(image, axis=0)
|
132 |
+
elif isinstance(image, list) and isinstance(image[0], np.ndarray):
|
133 |
+
image = np.concatenate([i[None, :] for i in image], axis=0)
|
134 |
+
|
135 |
+
image = image.transpose(0, 3, 1, 2)
|
136 |
+
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
|
137 |
+
|
138 |
+
# preprocess mask
|
139 |
+
if isinstance(mask, (PIL.Image.Image, np.ndarray)):
|
140 |
+
mask = [mask]
|
141 |
+
|
142 |
+
if isinstance(mask, list) and isinstance(mask[0], PIL.Image.Image):
|
143 |
+
mask = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in mask]
|
144 |
+
mask = np.concatenate([np.array(m.convert("L"))[None, None, :] for m in mask], axis=0)
|
145 |
+
mask = mask.astype(np.float32) / 255.0
|
146 |
+
elif isinstance(mask, list) and isinstance(mask[0], np.ndarray):
|
147 |
+
mask = np.concatenate([m[None, None, :] for m in mask], axis=0)
|
148 |
+
|
149 |
+
mask[mask < 0.5] = 0
|
150 |
+
mask[mask >= 0.5] = 1
|
151 |
+
mask = torch.from_numpy(mask)
|
152 |
+
|
153 |
+
masked_image = image * (mask < 0.5)
|
154 |
+
|
155 |
+
# n.b. ensure backwards compatibility as old function does not return image
|
156 |
+
if return_image:
|
157 |
+
return mask, masked_image, image
|
158 |
+
|
159 |
+
return mask, masked_image
|
160 |
+
|
161 |
+
|
162 |
+
class StableDiffusionInpaintPipeline(
|
163 |
+
DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, FromSingleFileMixin
|
164 |
+
):
|
165 |
+
r"""
|
166 |
+
Pipeline for text-guided image inpainting using Stable Diffusion.
|
167 |
+
|
168 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
169 |
+
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
170 |
+
|
171 |
+
The pipeline also inherits the following loading methods:
|
172 |
+
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
173 |
+
- [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
174 |
+
- [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
175 |
+
|
176 |
+
Args:
|
177 |
+
vae ([`AutoencoderKL`, `AsymmetricAutoencoderKL`]):
|
178 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
179 |
+
text_encoder ([`CLIPTextModel`]):
|
180 |
+
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
|
181 |
+
tokenizer ([`~transformers.CLIPTokenizer`]):
|
182 |
+
A `CLIPTokenizer` to tokenize text.
|
183 |
+
unet ([`UNet2DConditionModel`]):
|
184 |
+
A `UNet2DConditionModel` to denoise the encoded image latents.
|
185 |
+
scheduler ([`SchedulerMixin`]):
|
186 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
187 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
188 |
+
safety_checker ([`StableDiffusionSafetyChecker`]):
|
189 |
+
Classification module that estimates whether generated images could be considered offensive or harmful.
|
190 |
+
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
|
191 |
+
about a model's potential harms.
|
192 |
+
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
193 |
+
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
194 |
+
"""
|
195 |
+
model_cpu_offload_seq = "text_encoder->unet->vae"
|
196 |
+
_optional_components = ["safety_checker", "feature_extractor"]
|
197 |
+
_exclude_from_cpu_offload = ["safety_checker"]
|
198 |
+
|
199 |
+
def __init__(
|
200 |
+
self,
|
201 |
+
vae: Union[AutoencoderKL, AsymmetricAutoencoderKL],
|
202 |
+
text_encoder: CLIPTextModel,
|
203 |
+
tokenizer: CLIPTokenizer,
|
204 |
+
unet: UNet2DConditionModel,
|
205 |
+
scheduler: KarrasDiffusionSchedulers,
|
206 |
+
safety_checker: StableDiffusionSafetyChecker,
|
207 |
+
feature_extractor: CLIPImageProcessor,
|
208 |
+
requires_safety_checker: bool = True,
|
209 |
+
):
|
210 |
+
super().__init__()
|
211 |
+
|
212 |
+
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
|
213 |
+
deprecation_message = (
|
214 |
+
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
215 |
+
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
|
216 |
+
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
217 |
+
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
218 |
+
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
219 |
+
" file"
|
220 |
+
)
|
221 |
+
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
|
222 |
+
new_config = dict(scheduler.config)
|
223 |
+
new_config["steps_offset"] = 1
|
224 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
225 |
+
|
226 |
+
if hasattr(scheduler.config, "skip_prk_steps") and scheduler.config.skip_prk_steps is False:
|
227 |
+
deprecation_message = (
|
228 |
+
f"The configuration file of this scheduler: {scheduler} has not set the configuration"
|
229 |
+
" `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make"
|
230 |
+
" sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to"
|
231 |
+
" incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face"
|
232 |
+
" Hub, it would be very nice if you could open a Pull request for the"
|
233 |
+
" `scheduler/scheduler_config.json` file"
|
234 |
+
)
|
235 |
+
deprecate("skip_prk_steps not set", "1.0.0", deprecation_message, standard_warn=False)
|
236 |
+
new_config = dict(scheduler.config)
|
237 |
+
new_config["skip_prk_steps"] = True
|
238 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
239 |
+
|
240 |
+
if safety_checker is None and requires_safety_checker:
|
241 |
+
logger.warning(
|
242 |
+
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
243 |
+
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
244 |
+
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
245 |
+
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
246 |
+
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
247 |
+
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
248 |
+
)
|
249 |
+
|
250 |
+
if safety_checker is not None and feature_extractor is None:
|
251 |
+
raise ValueError(
|
252 |
+
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
|
253 |
+
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
|
254 |
+
)
|
255 |
+
|
256 |
+
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
|
257 |
+
version.parse(unet.config._diffusers_version).base_version
|
258 |
+
) < version.parse("0.9.0.dev0")
|
259 |
+
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
|
260 |
+
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
|
261 |
+
deprecation_message = (
|
262 |
+
"The configuration file of the unet has set the default `sample_size` to smaller than"
|
263 |
+
" 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the"
|
264 |
+
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
|
265 |
+
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
|
266 |
+
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
|
267 |
+
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
|
268 |
+
" in the config might lead to incorrect results in future versions. If you have downloaded this"
|
269 |
+
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
|
270 |
+
" the `unet/config.json` file"
|
271 |
+
)
|
272 |
+
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
|
273 |
+
new_config = dict(unet.config)
|
274 |
+
new_config["sample_size"] = 64
|
275 |
+
unet._internal_dict = FrozenDict(new_config)
|
276 |
+
|
277 |
+
# Check shapes, assume num_channels_latents == 4, num_channels_mask == 1, num_channels_masked == 4
|
278 |
+
if unet.config.in_channels != 9:
|
279 |
+
logger.info(f"You have loaded a UNet with {unet.config.in_channels} input channels which.")
|
280 |
+
|
281 |
+
self.register_modules(
|
282 |
+
vae=vae,
|
283 |
+
text_encoder=text_encoder,
|
284 |
+
tokenizer=tokenizer,
|
285 |
+
unet=unet,
|
286 |
+
scheduler=scheduler,
|
287 |
+
safety_checker=safety_checker,
|
288 |
+
feature_extractor=feature_extractor,
|
289 |
+
)
|
290 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
291 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
292 |
+
self.mask_processor = VaeImageProcessor(
|
293 |
+
vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True
|
294 |
+
)
|
295 |
+
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
296 |
+
|
297 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
|
298 |
+
def _encode_prompt(
|
299 |
+
self,
|
300 |
+
prompt,
|
301 |
+
device,
|
302 |
+
num_images_per_prompt,
|
303 |
+
do_classifier_free_guidance,
|
304 |
+
negative_prompt=None,
|
305 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
306 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
307 |
+
lora_scale: Optional[float] = None,
|
308 |
+
**kwargs,
|
309 |
+
):
|
310 |
+
deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
|
311 |
+
deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)
|
312 |
+
|
313 |
+
prompt_embeds_tuple = self.encode_prompt(
|
314 |
+
prompt=prompt,
|
315 |
+
device=device,
|
316 |
+
num_images_per_prompt=num_images_per_prompt,
|
317 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
318 |
+
negative_prompt=negative_prompt,
|
319 |
+
prompt_embeds=prompt_embeds,
|
320 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
321 |
+
lora_scale=lora_scale,
|
322 |
+
**kwargs,
|
323 |
+
)
|
324 |
+
|
325 |
+
# concatenate for backwards comp
|
326 |
+
prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]])
|
327 |
+
|
328 |
+
return prompt_embeds
|
329 |
+
|
330 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt
|
331 |
+
def encode_prompt(
|
332 |
+
self,
|
333 |
+
prompt,
|
334 |
+
device,
|
335 |
+
num_images_per_prompt,
|
336 |
+
do_classifier_free_guidance,
|
337 |
+
negative_prompt=None,
|
338 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
339 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
340 |
+
lora_scale: Optional[float] = None,
|
341 |
+
clip_skip: Optional[int] = None,
|
342 |
+
):
|
343 |
+
r"""
|
344 |
+
Encodes the prompt into text encoder hidden states.
|
345 |
+
|
346 |
+
Args:
|
347 |
+
prompt (`str` or `List[str]`, *optional*):
|
348 |
+
prompt to be encoded
|
349 |
+
device: (`torch.device`):
|
350 |
+
torch device
|
351 |
+
num_images_per_prompt (`int`):
|
352 |
+
number of images that should be generated per prompt
|
353 |
+
do_classifier_free_guidance (`bool`):
|
354 |
+
whether to use classifier free guidance or not
|
355 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
356 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
357 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
358 |
+
less than `1`).
|
359 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
360 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
361 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
362 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
363 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
364 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
365 |
+
argument.
|
366 |
+
lora_scale (`float`, *optional*):
|
367 |
+
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
368 |
+
clip_skip (`int`, *optional*):
|
369 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
370 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
371 |
+
"""
|
372 |
+
# set lora scale so that monkey patched LoRA
|
373 |
+
# function of text encoder can correctly access it
|
374 |
+
|
375 |
+
if prompt is not None and isinstance(prompt, str):
|
376 |
+
batch_size = 1
|
377 |
+
elif prompt is not None and isinstance(prompt, list):
|
378 |
+
batch_size = len(prompt)
|
379 |
+
else:
|
380 |
+
batch_size = prompt_embeds.shape[0]
|
381 |
+
|
382 |
+
if prompt_embeds is None:
|
383 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
384 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
385 |
+
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
|
386 |
+
|
387 |
+
text_inputs = self.tokenizer(
|
388 |
+
prompt,
|
389 |
+
padding="max_length",
|
390 |
+
max_length=self.tokenizer.model_max_length,
|
391 |
+
truncation=True,
|
392 |
+
return_tensors="pt",
|
393 |
+
)
|
394 |
+
text_input_ids = text_inputs.input_ids
|
395 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
396 |
+
|
397 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
398 |
+
text_input_ids, untruncated_ids
|
399 |
+
):
|
400 |
+
removed_text = self.tokenizer.batch_decode(
|
401 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
402 |
+
)
|
403 |
+
logger.warning(
|
404 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
405 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
406 |
+
)
|
407 |
+
|
408 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
409 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
410 |
+
else:
|
411 |
+
attention_mask = None
|
412 |
+
|
413 |
+
if clip_skip is None:
|
414 |
+
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
|
415 |
+
prompt_embeds = prompt_embeds[0]
|
416 |
+
else:
|
417 |
+
prompt_embeds = self.text_encoder(
|
418 |
+
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
|
419 |
+
)
|
420 |
+
# Access the `hidden_states` first, that contains a tuple of
|
421 |
+
# all the hidden states from the encoder layers. Then index into
|
422 |
+
# the tuple to access the hidden states from the desired layer.
|
423 |
+
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
|
424 |
+
# We also need to apply the final LayerNorm here to not mess with the
|
425 |
+
# representations. The `last_hidden_states` that we typically use for
|
426 |
+
# obtaining the final prompt representations passes through the LayerNorm
|
427 |
+
# layer.
|
428 |
+
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
|
429 |
+
|
430 |
+
if self.text_encoder is not None:
|
431 |
+
prompt_embeds_dtype = self.text_encoder.dtype
|
432 |
+
elif self.unet is not None:
|
433 |
+
prompt_embeds_dtype = self.unet.dtype
|
434 |
+
else:
|
435 |
+
prompt_embeds_dtype = prompt_embeds.dtype
|
436 |
+
|
437 |
+
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
438 |
+
|
439 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
440 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
441 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
442 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
443 |
+
|
444 |
+
# get unconditional embeddings for classifier free guidance
|
445 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
446 |
+
uncond_tokens: List[str]
|
447 |
+
if negative_prompt is None:
|
448 |
+
uncond_tokens = [""] * batch_size
|
449 |
+
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
450 |
+
raise TypeError(
|
451 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
452 |
+
f" {type(prompt)}."
|
453 |
+
)
|
454 |
+
elif isinstance(negative_prompt, str):
|
455 |
+
uncond_tokens = [negative_prompt]
|
456 |
+
elif batch_size != len(negative_prompt):
|
457 |
+
raise ValueError(
|
458 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
459 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
460 |
+
" the batch size of `prompt`."
|
461 |
+
)
|
462 |
+
else:
|
463 |
+
uncond_tokens = negative_prompt
|
464 |
+
|
465 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
466 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
467 |
+
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
|
468 |
+
|
469 |
+
max_length = prompt_embeds.shape[1]
|
470 |
+
uncond_input = self.tokenizer(
|
471 |
+
uncond_tokens,
|
472 |
+
padding="max_length",
|
473 |
+
max_length=max_length,
|
474 |
+
truncation=True,
|
475 |
+
return_tensors="pt",
|
476 |
+
)
|
477 |
+
|
478 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
479 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
480 |
+
else:
|
481 |
+
attention_mask = None
|
482 |
+
|
483 |
+
negative_prompt_embeds = self.text_encoder(
|
484 |
+
uncond_input.input_ids.to(device),
|
485 |
+
attention_mask=attention_mask,
|
486 |
+
)
|
487 |
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
488 |
+
|
489 |
+
if do_classifier_free_guidance:
|
490 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
491 |
+
seq_len = negative_prompt_embeds.shape[1]
|
492 |
+
|
493 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
494 |
+
|
495 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
496 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
497 |
+
|
498 |
+
return prompt_embeds, negative_prompt_embeds
|
499 |
+
|
500 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
|
501 |
+
def run_safety_checker(self, image, device, dtype):
|
502 |
+
if self.safety_checker is None:
|
503 |
+
has_nsfw_concept = None
|
504 |
+
else:
|
505 |
+
if torch.is_tensor(image):
|
506 |
+
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
|
507 |
+
else:
|
508 |
+
feature_extractor_input = self.image_processor.numpy_to_pil(image)
|
509 |
+
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
|
510 |
+
image, has_nsfw_concept = self.safety_checker(
|
511 |
+
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
512 |
+
)
|
513 |
+
return image, has_nsfw_concept
|
514 |
+
|
515 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
516 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
517 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
518 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
519 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
520 |
+
# and should be between [0, 1]
|
521 |
+
|
522 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
523 |
+
extra_step_kwargs = {}
|
524 |
+
if accepts_eta:
|
525 |
+
extra_step_kwargs["eta"] = eta
|
526 |
+
|
527 |
+
# check if the scheduler accepts generator
|
528 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
529 |
+
if accepts_generator:
|
530 |
+
extra_step_kwargs["generator"] = generator
|
531 |
+
return extra_step_kwargs
|
532 |
+
|
533 |
+
def check_inputs(
|
534 |
+
self,
|
535 |
+
prompt,
|
536 |
+
height,
|
537 |
+
width,
|
538 |
+
strength,
|
539 |
+
callback_steps,
|
540 |
+
negative_prompt=None,
|
541 |
+
prompt_embeds=None,
|
542 |
+
negative_prompt_embeds=None,
|
543 |
+
):
|
544 |
+
if strength < 0 or strength > 1:
|
545 |
+
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
|
546 |
+
|
547 |
+
if height % self.vae_scale_factor != 0 or width % self.vae_scale_factor != 0:
|
548 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
549 |
+
|
550 |
+
if (callback_steps is None) or (
|
551 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
552 |
+
):
|
553 |
+
raise ValueError(
|
554 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
555 |
+
f" {type(callback_steps)}."
|
556 |
+
)
|
557 |
+
|
558 |
+
if prompt is not None and prompt_embeds is not None:
|
559 |
+
raise ValueError(
|
560 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
561 |
+
" only forward one of the two."
|
562 |
+
)
|
563 |
+
elif prompt is None and prompt_embeds is None:
|
564 |
+
raise ValueError(
|
565 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
566 |
+
)
|
567 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
568 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
569 |
+
|
570 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
571 |
+
raise ValueError(
|
572 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
573 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
574 |
+
)
|
575 |
+
|
576 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
577 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
578 |
+
raise ValueError(
|
579 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
580 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
581 |
+
f" {negative_prompt_embeds.shape}."
|
582 |
+
)
|
583 |
+
|
584 |
+
def prepare_latents(
|
585 |
+
self,
|
586 |
+
batch_size,
|
587 |
+
num_channels_latents,
|
588 |
+
height,
|
589 |
+
width,
|
590 |
+
dtype,
|
591 |
+
device,
|
592 |
+
generator,
|
593 |
+
latents=None,
|
594 |
+
image=None,
|
595 |
+
timestep=None,
|
596 |
+
is_strength_max=True,
|
597 |
+
return_noise=False,
|
598 |
+
return_image_latents=False,
|
599 |
+
):
|
600 |
+
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
601 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
602 |
+
raise ValueError(
|
603 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
604 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
605 |
+
)
|
606 |
+
|
607 |
+
if (image is None or timestep is None) and not is_strength_max:
|
608 |
+
raise ValueError(
|
609 |
+
"Since strength < 1. initial latents are to be initialised as a combination of Image + Noise."
|
610 |
+
"However, either the image or the noise timestep has not been provided."
|
611 |
+
)
|
612 |
+
|
613 |
+
if return_image_latents or (latents is None and not is_strength_max):
|
614 |
+
image = image.to(device=device, dtype=dtype)
|
615 |
+
|
616 |
+
if image.shape[1] == 4:
|
617 |
+
image_latents = image
|
618 |
+
else:
|
619 |
+
image_latents = self._encode_vae_image(image=image, generator=generator)
|
620 |
+
image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1)
|
621 |
+
|
622 |
+
if latents is None:
|
623 |
+
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
624 |
+
# if strength is 1. then initialise the latents to noise, else initial to image + noise
|
625 |
+
latents = noise if is_strength_max else self.scheduler.add_noise(image_latents, noise, timestep)
|
626 |
+
# if pure noise then scale the initial latents by the Scheduler's init sigma
|
627 |
+
latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents
|
628 |
+
else:
|
629 |
+
noise = latents.to(device)
|
630 |
+
latents = noise * self.scheduler.init_noise_sigma
|
631 |
+
|
632 |
+
outputs = (latents,)
|
633 |
+
|
634 |
+
if return_noise:
|
635 |
+
outputs += (noise,)
|
636 |
+
|
637 |
+
if return_image_latents:
|
638 |
+
outputs += (image_latents,)
|
639 |
+
|
640 |
+
return outputs
|
641 |
+
|
642 |
+
def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
|
643 |
+
if isinstance(generator, list):
|
644 |
+
image_latents = [
|
645 |
+
self.vae.encode(image[i : i + 1]).latent_dist.sample(generator=generator[i])
|
646 |
+
for i in range(image.shape[0])
|
647 |
+
]
|
648 |
+
image_latents = torch.cat(image_latents, dim=0)
|
649 |
+
else:
|
650 |
+
image_latents = self.vae.encode(image).latent_dist.sample(generator=generator)
|
651 |
+
|
652 |
+
image_latents = self.vae.config.scaling_factor * image_latents
|
653 |
+
|
654 |
+
return image_latents
|
655 |
+
|
656 |
+
def prepare_mask_latents(
|
657 |
+
self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance
|
658 |
+
):
|
659 |
+
# resize the mask to latents shape as we concatenate the mask to the latents
|
660 |
+
# we do that before converting to dtype to avoid breaking in case we're using cpu_offload
|
661 |
+
# and half precision
|
662 |
+
mask = torch.nn.functional.interpolate(
|
663 |
+
mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
|
664 |
+
)
|
665 |
+
mask = mask.to(device=device, dtype=dtype)
|
666 |
+
|
667 |
+
masked_image = masked_image.to(device=device, dtype=dtype)
|
668 |
+
|
669 |
+
if masked_image.shape[1] == 4:
|
670 |
+
masked_image_latents = masked_image
|
671 |
+
else:
|
672 |
+
masked_image_latents = self._encode_vae_image(masked_image, generator=generator)
|
673 |
+
|
674 |
+
# duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
|
675 |
+
if mask.shape[0] < batch_size:
|
676 |
+
if not batch_size % mask.shape[0] == 0:
|
677 |
+
raise ValueError(
|
678 |
+
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
|
679 |
+
f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
|
680 |
+
" of masks that you pass is divisible by the total requested batch size."
|
681 |
+
)
|
682 |
+
mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
|
683 |
+
if masked_image_latents.shape[0] < batch_size:
|
684 |
+
if not batch_size % masked_image_latents.shape[0] == 0:
|
685 |
+
raise ValueError(
|
686 |
+
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
|
687 |
+
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
|
688 |
+
" Make sure the number of images that you pass is divisible by the total requested batch size."
|
689 |
+
)
|
690 |
+
masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1)
|
691 |
+
|
692 |
+
mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
|
693 |
+
masked_image_latents = (
|
694 |
+
torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
|
695 |
+
)
|
696 |
+
|
697 |
+
# aligning device to prevent device errors when concating it with the latent model input
|
698 |
+
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
|
699 |
+
return mask, masked_image_latents
|
700 |
+
|
701 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
|
702 |
+
def get_timesteps(self, num_inference_steps, strength, device):
|
703 |
+
# get the original timestep using init_timestep
|
704 |
+
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
705 |
+
|
706 |
+
t_start = max(num_inference_steps - init_timestep, 0)
|
707 |
+
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
|
708 |
+
|
709 |
+
return timesteps, num_inference_steps - t_start
|
710 |
+
|
711 |
+
@torch.no_grad()
|
712 |
+
def __call__(
|
713 |
+
self,
|
714 |
+
prompt: Union[str, List[str]] = None,
|
715 |
+
image: PipelineImageInput = None,
|
716 |
+
mask_image: PipelineImageInput = None,
|
717 |
+
masked_image_latents: torch.FloatTensor = None,
|
718 |
+
height: Optional[int] = None,
|
719 |
+
width: Optional[int] = None,
|
720 |
+
strength: float = 1.0,
|
721 |
+
num_inference_steps: int = 50,
|
722 |
+
guidance_scale: float = 7.5,
|
723 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
724 |
+
num_images_per_prompt: Optional[int] = 1,
|
725 |
+
eta: float = 0.0,
|
726 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
727 |
+
latents: Optional[torch.FloatTensor] = None,
|
728 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
729 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
730 |
+
output_type: Optional[str] = "pil",
|
731 |
+
return_dict: bool = True,
|
732 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
733 |
+
callback_steps: int = 1,
|
734 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
735 |
+
clip_skip: int = None,
|
736 |
+
):
|
737 |
+
r"""
|
738 |
+
The call function to the pipeline for generation.
|
739 |
+
|
740 |
+
Args:
|
741 |
+
prompt (`str` or `List[str]`, *optional*):
|
742 |
+
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
743 |
+
image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
|
744 |
+
`Image`, numpy array or tensor representing an image batch to be inpainted (which parts of the image to
|
745 |
+
be masked out with `mask_image` and repainted according to `prompt`). For both numpy array and pytorch
|
746 |
+
tensor, the expected value range is between `[0, 1]` If it's a tensor or a list or tensors, the
|
747 |
+
expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a list of arrays, the
|
748 |
+
expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image latents as `image`, but
|
749 |
+
if passing latents directly it is not encoded again.
|
750 |
+
mask_image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
|
751 |
+
`Image`, numpy array or tensor representing an image batch to mask `image`. White pixels in the mask
|
752 |
+
are repainted while black pixels are preserved. If `mask_image` is a PIL image, it is converted to a
|
753 |
+
single channel (luminance) before use. If it's a numpy array or pytorch tensor, it should contain one
|
754 |
+
color channel (L) instead of 3, so the expected shape for pytorch tensor would be `(B, 1, H, W)`, `(B,
|
755 |
+
H, W)`, `(1, H, W)`, `(H, W)`. And for numpy array would be for `(B, H, W, 1)`, `(B, H, W)`, `(H, W,
|
756 |
+
1)`, or `(H, W)`.
|
757 |
+
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
758 |
+
The height in pixels of the generated image.
|
759 |
+
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
760 |
+
The width in pixels of the generated image.
|
761 |
+
strength (`float`, *optional*, defaults to 1.0):
|
762 |
+
Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
|
763 |
+
starting point and more noise is added the higher the `strength`. The number of denoising steps depends
|
764 |
+
on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
|
765 |
+
process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
|
766 |
+
essentially ignores `image`.
|
767 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
768 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
769 |
+
expense of slower inference. This parameter is modulated by `strength`.
|
770 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
771 |
+
A higher guidance scale value encourages the model to generate images closely linked to the text
|
772 |
+
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
773 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
774 |
+
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
775 |
+
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
776 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
777 |
+
The number of images to generate per prompt.
|
778 |
+
eta (`float`, *optional*, defaults to 0.0):
|
779 |
+
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
780 |
+
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
781 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
782 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
783 |
+
generation deterministic.
|
784 |
+
latents (`torch.FloatTensor`, *optional*):
|
785 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
786 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
787 |
+
tensor is generated by sampling using the supplied random `generator`.
|
788 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
789 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
790 |
+
provided, text embeddings are generated from the `prompt` input argument.
|
791 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
792 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
793 |
+
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
794 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
795 |
+
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
796 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
797 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
798 |
+
plain tuple.
|
799 |
+
callback (`Callable`, *optional*):
|
800 |
+
A function that calls every `callback_steps` steps during inference. The function is called with the
|
801 |
+
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
802 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
803 |
+
The frequency at which the `callback` function is called. If not specified, the callback is called at
|
804 |
+
every step.
|
805 |
+
cross_attention_kwargs (`dict`, *optional*):
|
806 |
+
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
807 |
+
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
808 |
+
clip_skip (`int`, *optional*):
|
809 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
810 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
811 |
+
Examples:
|
812 |
+
|
813 |
+
```py
|
814 |
+
>>> import PIL
|
815 |
+
>>> import requests
|
816 |
+
>>> import torch
|
817 |
+
>>> from io import BytesIO
|
818 |
+
|
819 |
+
>>> from diffusers import StableDiffusionInpaintPipeline
|
820 |
+
|
821 |
+
|
822 |
+
>>> def download_image(url):
|
823 |
+
... response = requests.get(url)
|
824 |
+
... return PIL.Image.open(BytesIO(response.content)).convert("RGB")
|
825 |
+
|
826 |
+
|
827 |
+
>>> img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
|
828 |
+
>>> mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
|
829 |
+
|
830 |
+
>>> init_image = download_image(img_url).resize((512, 512))
|
831 |
+
>>> mask_image = download_image(mask_url).resize((512, 512))
|
832 |
+
|
833 |
+
>>> pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
834 |
+
... "runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16
|
835 |
+
... )
|
836 |
+
>>> pipe = pipe.to("cuda")
|
837 |
+
|
838 |
+
>>> prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
|
839 |
+
>>> image = pipe(prompt=prompt, image=init_image, mask_image=mask_image).images[0]
|
840 |
+
```
|
841 |
+
|
842 |
+
Returns:
|
843 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
844 |
+
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
|
845 |
+
otherwise a `tuple` is returned where the first element is a list with the generated images and the
|
846 |
+
second element is a list of `bool`s indicating whether the corresponding generated image contains
|
847 |
+
"not-safe-for-work" (nsfw) content.
|
848 |
+
"""
|
849 |
+
# 0. Default height and width to unet
|
850 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
851 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
852 |
+
|
853 |
+
# 1. Check inputs
|
854 |
+
self.check_inputs(
|
855 |
+
prompt,
|
856 |
+
height,
|
857 |
+
width,
|
858 |
+
strength,
|
859 |
+
callback_steps,
|
860 |
+
negative_prompt,
|
861 |
+
prompt_embeds,
|
862 |
+
negative_prompt_embeds,
|
863 |
+
)
|
864 |
+
|
865 |
+
# 2. Define call parameters
|
866 |
+
if prompt is not None and isinstance(prompt, str):
|
867 |
+
batch_size = 1
|
868 |
+
elif prompt is not None and isinstance(prompt, list):
|
869 |
+
batch_size = len(prompt)
|
870 |
+
else:
|
871 |
+
batch_size = prompt_embeds.shape[0]
|
872 |
+
|
873 |
+
device = self._execution_device
|
874 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
875 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
876 |
+
# corresponds to doing no classifier free guidance.
|
877 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
878 |
+
|
879 |
+
# 3. Encode input prompt
|
880 |
+
text_encoder_lora_scale = (
|
881 |
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
882 |
+
)
|
883 |
+
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
884 |
+
prompt,
|
885 |
+
device,
|
886 |
+
num_images_per_prompt,
|
887 |
+
do_classifier_free_guidance,
|
888 |
+
negative_prompt,
|
889 |
+
prompt_embeds=prompt_embeds,
|
890 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
891 |
+
lora_scale=text_encoder_lora_scale,
|
892 |
+
clip_skip=clip_skip,
|
893 |
+
)
|
894 |
+
# For classifier free guidance, we need to do two forward passes.
|
895 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
896 |
+
# to avoid doing two forward passes
|
897 |
+
if do_classifier_free_guidance:
|
898 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
899 |
+
|
900 |
+
# 4. set timesteps
|
901 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
902 |
+
timesteps, num_inference_steps = self.get_timesteps(
|
903 |
+
num_inference_steps=num_inference_steps, strength=strength, device=device
|
904 |
+
)
|
905 |
+
# check that number of inference steps is not < 1 - as this doesn't make sense
|
906 |
+
if num_inference_steps < 1:
|
907 |
+
raise ValueError(
|
908 |
+
f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline"
|
909 |
+
f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
|
910 |
+
)
|
911 |
+
# at which timestep to set the initial noise (n.b. 50% if strength is 0.5)
|
912 |
+
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
913 |
+
# create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise
|
914 |
+
is_strength_max = strength == 1.0
|
915 |
+
|
916 |
+
# 5. Preprocess mask and image
|
917 |
+
|
918 |
+
init_image = self.image_processor.preprocess(image, height=height, width=width)
|
919 |
+
init_image = init_image.to(dtype=torch.float32)
|
920 |
+
|
921 |
+
# 6. Prepare latent variables
|
922 |
+
num_channels_latents = self.vae.config.latent_channels
|
923 |
+
num_channels_unet = self.unet.config.in_channels
|
924 |
+
return_image_latents = num_channels_unet == 4
|
925 |
+
|
926 |
+
latents_outputs = self.prepare_latents(
|
927 |
+
batch_size * num_images_per_prompt,
|
928 |
+
num_channels_latents,
|
929 |
+
height,
|
930 |
+
width,
|
931 |
+
prompt_embeds.dtype,
|
932 |
+
device,
|
933 |
+
generator,
|
934 |
+
latents,
|
935 |
+
image=init_image,
|
936 |
+
timestep=latent_timestep,
|
937 |
+
is_strength_max=is_strength_max,
|
938 |
+
return_noise=True,
|
939 |
+
return_image_latents=return_image_latents,
|
940 |
+
)
|
941 |
+
|
942 |
+
if return_image_latents:
|
943 |
+
latents, noise, image_latents = latents_outputs
|
944 |
+
else:
|
945 |
+
latents, noise = latents_outputs
|
946 |
+
|
947 |
+
# 7. Prepare mask latent variables
|
948 |
+
mask_condition = self.mask_processor.preprocess(mask_image, height=height, width=width)
|
949 |
+
|
950 |
+
if masked_image_latents is None:
|
951 |
+
masked_image = init_image * (mask_condition < 0.5)
|
952 |
+
else:
|
953 |
+
masked_image = masked_image_latents
|
954 |
+
|
955 |
+
mask, masked_image_latents = self.prepare_mask_latents(
|
956 |
+
mask_condition,
|
957 |
+
masked_image,
|
958 |
+
batch_size * num_images_per_prompt,
|
959 |
+
height,
|
960 |
+
width,
|
961 |
+
prompt_embeds.dtype,
|
962 |
+
device,
|
963 |
+
generator,
|
964 |
+
do_classifier_free_guidance,
|
965 |
+
)
|
966 |
+
|
967 |
+
# 8. Check that sizes of mask, masked image and latents match
|
968 |
+
if num_channels_unet == 9:
|
969 |
+
# default case for runwayml/stable-diffusion-inpainting
|
970 |
+
num_channels_mask = mask.shape[1]
|
971 |
+
num_channels_masked_image = masked_image_latents.shape[1]
|
972 |
+
if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels:
|
973 |
+
raise ValueError(
|
974 |
+
f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
|
975 |
+
f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
|
976 |
+
f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}"
|
977 |
+
f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of"
|
978 |
+
" `pipeline.unet` or your `mask_image` or `image` input."
|
979 |
+
)
|
980 |
+
elif num_channels_unet != 4:
|
981 |
+
raise ValueError(
|
982 |
+
f"The unet {self.unet.__class__} should have either 4 or 9 input channels, not {self.unet.config.in_channels}."
|
983 |
+
)
|
984 |
+
|
985 |
+
# 9. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
986 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
987 |
+
|
988 |
+
return latents, mask, masked_image, masked_image_latents
|
989 |
+
|
990 |
+
# 10. Denoising loop
|
991 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
992 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
993 |
+
for i, t in enumerate(timesteps):
|
994 |
+
# expand the latents if we are doing classifier free guidance
|
995 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
996 |
+
|
997 |
+
# concat latents, mask, masked_image_latents in the channel dimension
|
998 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
999 |
+
|
1000 |
+
if num_channels_unet == 9:
|
1001 |
+
latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1)
|
1002 |
+
|
1003 |
+
# predict the noise residual
|
1004 |
+
noise_pred = self.unet(
|
1005 |
+
latent_model_input,
|
1006 |
+
t,
|
1007 |
+
encoder_hidden_states=prompt_embeds,
|
1008 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1009 |
+
return_dict=False,
|
1010 |
+
)[0]
|
1011 |
+
|
1012 |
+
# perform guidance
|
1013 |
+
if do_classifier_free_guidance:
|
1014 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1015 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1016 |
+
|
1017 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1018 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
1019 |
+
if num_channels_unet == 4:
|
1020 |
+
init_latents_proper = image_latents
|
1021 |
+
if do_classifier_free_guidance:
|
1022 |
+
init_mask, _ = mask.chunk(2)
|
1023 |
+
else:
|
1024 |
+
init_mask = mask
|
1025 |
+
|
1026 |
+
if i < len(timesteps) - 1:
|
1027 |
+
noise_timestep = timesteps[i + 1]
|
1028 |
+
init_latents_proper = self.scheduler.add_noise(
|
1029 |
+
init_latents_proper, noise, torch.tensor([noise_timestep])
|
1030 |
+
)
|
1031 |
+
|
1032 |
+
latents = (1 - init_mask) * init_latents_proper + init_mask * latents
|
1033 |
+
|
1034 |
+
# call the callback, if provided
|
1035 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1036 |
+
progress_bar.update()
|
1037 |
+
if callback is not None and i % callback_steps == 0:
|
1038 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
1039 |
+
callback(step_idx, t, latents)
|
1040 |
+
|
1041 |
+
if not output_type == "latent":
|
1042 |
+
condition_kwargs = {}
|
1043 |
+
if isinstance(self.vae, AsymmetricAutoencoderKL):
|
1044 |
+
init_image = init_image.to(device=device, dtype=masked_image_latents.dtype)
|
1045 |
+
init_image_condition = init_image.clone()
|
1046 |
+
init_image = self._encode_vae_image(init_image, generator=generator)
|
1047 |
+
mask_condition = mask_condition.to(device=device, dtype=masked_image_latents.dtype)
|
1048 |
+
condition_kwargs = {"image": init_image_condition, "mask": mask_condition}
|
1049 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, **condition_kwargs)[0]
|
1050 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
1051 |
+
else:
|
1052 |
+
image = latents
|
1053 |
+
has_nsfw_concept = None
|
1054 |
+
|
1055 |
+
if has_nsfw_concept is None:
|
1056 |
+
do_denormalize = [True] * image.shape[0]
|
1057 |
+
else:
|
1058 |
+
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
1059 |
+
|
1060 |
+
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
1061 |
+
|
1062 |
+
# Offload all models
|
1063 |
+
self.maybe_free_model_hooks()
|
1064 |
+
|
1065 |
+
if not return_dict:
|
1066 |
+
return (image, has_nsfw_concept)
|
1067 |
+
|
1068 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
marigold/util/__pycache__/batchsize.cpython-310.pyc
ADDED
Binary file (1.75 kB). View file
|
|
marigold/util/__pycache__/ensemble.cpython-310.pyc
ADDED
Binary file (6.52 kB). View file
|
|
marigold/util/__pycache__/image_util.cpython-310.pyc
ADDED
Binary file (2.82 kB). View file
|
|
marigold/util/batchsize.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Bingxin Ke, ETH Zurich. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# --------------------------------------------------------------------------
|
15 |
+
# If you find this code useful, we kindly ask you to cite our paper in your work.
|
16 |
+
# Please find bibtex at: https://github.com/prs-eth/Marigold#-citation
|
17 |
+
# More information about the method can be found at https://marigoldmonodepth.github.io
|
18 |
+
# --------------------------------------------------------------------------
|
19 |
+
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import math
|
23 |
+
|
24 |
+
|
25 |
+
# Search table for suggested max. inference batch size
|
26 |
+
bs_search_table = [
|
27 |
+
# tested on A100-PCIE-80GB
|
28 |
+
{"res": 768, "total_vram": 79, "bs": 35, "dtype": torch.float32},
|
29 |
+
{"res": 1024, "total_vram": 79, "bs": 20, "dtype": torch.float32},
|
30 |
+
# tested on A100-PCIE-40GB
|
31 |
+
{"res": 768, "total_vram": 39, "bs": 15, "dtype": torch.float32},
|
32 |
+
{"res": 1024, "total_vram": 39, "bs": 8, "dtype": torch.float32},
|
33 |
+
{"res": 768, "total_vram": 39, "bs": 30, "dtype": torch.float16},
|
34 |
+
{"res": 1024, "total_vram": 39, "bs": 15, "dtype": torch.float16},
|
35 |
+
# tested on RTX3090, RTX4090
|
36 |
+
{"res": 512, "total_vram": 23, "bs": 20, "dtype": torch.float32},
|
37 |
+
{"res": 768, "total_vram": 23, "bs": 7, "dtype": torch.float32},
|
38 |
+
{"res": 1024, "total_vram": 23, "bs": 3, "dtype": torch.float32},
|
39 |
+
{"res": 512, "total_vram": 23, "bs": 40, "dtype": torch.float16},
|
40 |
+
{"res": 768, "total_vram": 23, "bs": 18, "dtype": torch.float16},
|
41 |
+
{"res": 1024, "total_vram": 23, "bs": 10, "dtype": torch.float16},
|
42 |
+
# tested on GTX1080Ti
|
43 |
+
{"res": 512, "total_vram": 10, "bs": 5, "dtype": torch.float32},
|
44 |
+
{"res": 768, "total_vram": 10, "bs": 2, "dtype": torch.float32},
|
45 |
+
{"res": 512, "total_vram": 10, "bs": 10, "dtype": torch.float16},
|
46 |
+
{"res": 768, "total_vram": 10, "bs": 5, "dtype": torch.float16},
|
47 |
+
{"res": 1024, "total_vram": 10, "bs": 3, "dtype": torch.float16},
|
48 |
+
]
|
49 |
+
|
50 |
+
|
51 |
+
def find_batch_size(ensemble_size: int, input_res: int, dtype: torch.dtype) -> int:
|
52 |
+
"""
|
53 |
+
Automatically search for suitable operating batch size.
|
54 |
+
|
55 |
+
Args:
|
56 |
+
ensemble_size (`int`):
|
57 |
+
Number of predictions to be ensembled.
|
58 |
+
input_res (`int`):
|
59 |
+
Operating resolution of the input image.
|
60 |
+
|
61 |
+
Returns:
|
62 |
+
`int`: Operating batch size.
|
63 |
+
"""
|
64 |
+
if not torch.cuda.is_available():
|
65 |
+
return 1
|
66 |
+
|
67 |
+
total_vram = torch.cuda.mem_get_info()[1] / 1024.0**3
|
68 |
+
filtered_bs_search_table = [s for s in bs_search_table if s["dtype"] == dtype]
|
69 |
+
for settings in sorted(
|
70 |
+
filtered_bs_search_table,
|
71 |
+
key=lambda k: (k["res"], -k["total_vram"]),
|
72 |
+
):
|
73 |
+
if input_res <= settings["res"] and total_vram >= settings["total_vram"]:
|
74 |
+
bs = settings["bs"]
|
75 |
+
if bs > ensemble_size:
|
76 |
+
bs = ensemble_size
|
77 |
+
elif bs > math.ceil(ensemble_size / 2) and bs < ensemble_size:
|
78 |
+
bs = math.ceil(ensemble_size / 2)
|
79 |
+
return bs
|
80 |
+
|
81 |
+
return 1
|
marigold/util/ensemble.py
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Bingxin Ke, ETH Zurich. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# --------------------------------------------------------------------------
|
15 |
+
# If you find this code useful, we kindly ask you to cite our paper in your work.
|
16 |
+
# Please find bibtex at: https://github.com/prs-eth/Marigold#-citation
|
17 |
+
# More information about the method can be found at https://marigoldmonodepth.github.io
|
18 |
+
# --------------------------------------------------------------------------
|
19 |
+
|
20 |
+
|
21 |
+
from functools import partial
|
22 |
+
from typing import Optional, Tuple
|
23 |
+
|
24 |
+
import numpy as np
|
25 |
+
import torch
|
26 |
+
|
27 |
+
from .image_util import get_tv_resample_method, resize_max_res
|
28 |
+
|
29 |
+
|
30 |
+
def inter_distances(tensors: torch.Tensor):
|
31 |
+
"""
|
32 |
+
To calculate the distance between each two depth maps.
|
33 |
+
"""
|
34 |
+
distances = []
|
35 |
+
for i, j in torch.combinations(torch.arange(tensors.shape[0])):
|
36 |
+
arr1 = tensors[i : i + 1]
|
37 |
+
arr2 = tensors[j : j + 1]
|
38 |
+
distances.append(arr1 - arr2)
|
39 |
+
dist = torch.concatenate(distances, dim=0)
|
40 |
+
return dist
|
41 |
+
|
42 |
+
|
43 |
+
def ensemble_depth(
|
44 |
+
depth: torch.Tensor,
|
45 |
+
scale_invariant: bool = True,
|
46 |
+
shift_invariant: bool = True,
|
47 |
+
output_uncertainty: bool = False,
|
48 |
+
reduction: str = "median",
|
49 |
+
regularizer_strength: float = 0.02,
|
50 |
+
max_iter: int = 2,
|
51 |
+
tol: float = 1e-3,
|
52 |
+
max_res: int = 1024,
|
53 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
54 |
+
"""
|
55 |
+
Ensembles depth maps represented by the `depth` tensor with expected shape `(B, 1, H, W)`, where B is the
|
56 |
+
number of ensemble members for a given prediction of size `(H x W)`. Even though the function is designed for
|
57 |
+
depth maps, it can also be used with disparity maps as long as the input tensor values are non-negative. The
|
58 |
+
alignment happens when the predictions have one or more degrees of freedom, that is when they are either
|
59 |
+
affine-invariant (`scale_invariant=True` and `shift_invariant=True`), or just scale-invariant (only
|
60 |
+
`scale_invariant=True`). For absolute predictions (`scale_invariant=False` and `shift_invariant=False`)
|
61 |
+
alignment is skipped and only ensembling is performed.
|
62 |
+
|
63 |
+
Args:
|
64 |
+
depth (`torch.Tensor`):
|
65 |
+
Input ensemble depth maps.
|
66 |
+
scale_invariant (`bool`, *optional*, defaults to `True`):
|
67 |
+
Whether to treat predictions as scale-invariant.
|
68 |
+
shift_invariant (`bool`, *optional*, defaults to `True`):
|
69 |
+
Whether to treat predictions as shift-invariant.
|
70 |
+
output_uncertainty (`bool`, *optional*, defaults to `False`):
|
71 |
+
Whether to output uncertainty map.
|
72 |
+
reduction (`str`, *optional*, defaults to `"median"`):
|
73 |
+
Reduction method used to ensemble aligned predictions. The accepted values are: `"mean"` and
|
74 |
+
`"median"`.
|
75 |
+
regularizer_strength (`float`, *optional*, defaults to `0.02`):
|
76 |
+
Strength of the regularizer that pulls the aligned predictions to the unit range from 0 to 1.
|
77 |
+
max_iter (`int`, *optional*, defaults to `2`):
|
78 |
+
Maximum number of the alignment solver steps. Refer to `scipy.optimize.minimize` function, `options`
|
79 |
+
argument.
|
80 |
+
tol (`float`, *optional*, defaults to `1e-3`):
|
81 |
+
Alignment solver tolerance. The solver stops when the tolerance is reached.
|
82 |
+
max_res (`int`, *optional*, defaults to `1024`):
|
83 |
+
Resolution at which the alignment is performed; `None` matches the `processing_resolution`.
|
84 |
+
Returns:
|
85 |
+
A tensor of aligned and ensembled depth maps and optionally a tensor of uncertainties of the same shape:
|
86 |
+
`(1, 1, H, W)`.
|
87 |
+
"""
|
88 |
+
if depth.dim() != 4 or depth.shape[1] != 1:
|
89 |
+
raise ValueError(f"Expecting 4D tensor of shape [B,1,H,W]; got {depth.shape}.")
|
90 |
+
if reduction not in ("mean", "median"):
|
91 |
+
raise ValueError(f"Unrecognized reduction method: {reduction}.")
|
92 |
+
if not scale_invariant and shift_invariant:
|
93 |
+
raise ValueError("Pure shift-invariant ensembling is not supported.")
|
94 |
+
|
95 |
+
def init_param(depth: torch.Tensor):
|
96 |
+
init_min = depth.reshape(ensemble_size, -1).min(dim=1).values
|
97 |
+
init_max = depth.reshape(ensemble_size, -1).max(dim=1).values
|
98 |
+
|
99 |
+
if scale_invariant and shift_invariant:
|
100 |
+
init_s = 1.0 / (init_max - init_min).clamp(min=1e-6)
|
101 |
+
init_t = -init_s * init_min
|
102 |
+
param = torch.cat((init_s, init_t)).cpu().numpy()
|
103 |
+
elif scale_invariant:
|
104 |
+
init_s = 1.0 / init_max.clamp(min=1e-6)
|
105 |
+
param = init_s.cpu().numpy()
|
106 |
+
else:
|
107 |
+
raise ValueError("Unrecognized alignment.")
|
108 |
+
|
109 |
+
return param
|
110 |
+
|
111 |
+
def align(depth: torch.Tensor, param: np.ndarray) -> torch.Tensor:
|
112 |
+
if scale_invariant and shift_invariant:
|
113 |
+
s, t = np.split(param, 2)
|
114 |
+
s = torch.from_numpy(s).to(depth).view(ensemble_size, 1, 1, 1)
|
115 |
+
t = torch.from_numpy(t).to(depth).view(ensemble_size, 1, 1, 1)
|
116 |
+
out = depth * s + t
|
117 |
+
elif scale_invariant:
|
118 |
+
s = torch.from_numpy(param).to(depth).view(ensemble_size, 1, 1, 1)
|
119 |
+
out = depth * s
|
120 |
+
else:
|
121 |
+
raise ValueError("Unrecognized alignment.")
|
122 |
+
return out
|
123 |
+
|
124 |
+
def ensemble(
|
125 |
+
depth_aligned: torch.Tensor, return_uncertainty: bool = False
|
126 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
127 |
+
uncertainty = None
|
128 |
+
if reduction == "mean":
|
129 |
+
prediction = torch.mean(depth_aligned, dim=0, keepdim=True)
|
130 |
+
if return_uncertainty:
|
131 |
+
uncertainty = torch.std(depth_aligned, dim=0, keepdim=True)
|
132 |
+
elif reduction == "median":
|
133 |
+
prediction = torch.median(depth_aligned, dim=0, keepdim=True).values
|
134 |
+
if return_uncertainty:
|
135 |
+
uncertainty = torch.median(
|
136 |
+
torch.abs(depth_aligned - prediction), dim=0, keepdim=True
|
137 |
+
).values
|
138 |
+
else:
|
139 |
+
raise ValueError(f"Unrecognized reduction method: {reduction}.")
|
140 |
+
return prediction, uncertainty
|
141 |
+
|
142 |
+
def cost_fn(param: np.ndarray, depth: torch.Tensor) -> float:
|
143 |
+
cost = 0.0
|
144 |
+
depth_aligned = align(depth, param)
|
145 |
+
|
146 |
+
for i, j in torch.combinations(torch.arange(ensemble_size)):
|
147 |
+
diff = depth_aligned[i] - depth_aligned[j]
|
148 |
+
cost += (diff**2).mean().sqrt().item()
|
149 |
+
|
150 |
+
if regularizer_strength > 0:
|
151 |
+
prediction, _ = ensemble(depth_aligned, return_uncertainty=False)
|
152 |
+
err_near = (0.0 - prediction.min()).abs().item()
|
153 |
+
err_far = (1.0 - prediction.max()).abs().item()
|
154 |
+
cost += (err_near + err_far) * regularizer_strength
|
155 |
+
|
156 |
+
return cost
|
157 |
+
|
158 |
+
def compute_param(depth: torch.Tensor):
|
159 |
+
import scipy
|
160 |
+
|
161 |
+
depth_to_align = depth.to(torch.float32)
|
162 |
+
if max_res is not None and max(depth_to_align.shape[2:]) > max_res:
|
163 |
+
depth_to_align = resize_max_res(
|
164 |
+
depth_to_align, max_res, get_tv_resample_method("nearest-exact")
|
165 |
+
)
|
166 |
+
|
167 |
+
param = init_param(depth_to_align)
|
168 |
+
|
169 |
+
res = scipy.optimize.minimize(
|
170 |
+
partial(cost_fn, depth=depth_to_align),
|
171 |
+
param,
|
172 |
+
method="BFGS",
|
173 |
+
tol=tol,
|
174 |
+
options={"maxiter": max_iter, "disp": False},
|
175 |
+
)
|
176 |
+
|
177 |
+
return res.x
|
178 |
+
|
179 |
+
requires_aligning = scale_invariant or shift_invariant
|
180 |
+
ensemble_size = depth.shape[0]
|
181 |
+
|
182 |
+
if requires_aligning:
|
183 |
+
param = compute_param(depth)
|
184 |
+
depth = align(depth, param)
|
185 |
+
|
186 |
+
depth, uncertainty = ensemble(depth, return_uncertainty=output_uncertainty)
|
187 |
+
|
188 |
+
depth_max = depth.max()
|
189 |
+
if scale_invariant and shift_invariant:
|
190 |
+
depth_min = depth.min()
|
191 |
+
elif scale_invariant:
|
192 |
+
depth_min = 0
|
193 |
+
else:
|
194 |
+
raise ValueError("Unrecognized alignment.")
|
195 |
+
depth_range = (depth_max - depth_min).clamp(min=1e-6)
|
196 |
+
depth = (depth - depth_min) / depth_range
|
197 |
+
if output_uncertainty:
|
198 |
+
uncertainty /= depth_range
|
199 |
+
|
200 |
+
return depth, uncertainty # [1,1,H,W], [1,1,H,W]
|
marigold/util/image_util.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Bingxin Ke, ETH Zurich. All rights reserved.
|
2 |
+
# Last modified: 2024-05-24
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
# --------------------------------------------------------------------------
|
16 |
+
# If you find this code useful, we kindly ask you to cite our paper in your work.
|
17 |
+
# Please find bibtex at: https://github.com/prs-eth/Marigold#-citation
|
18 |
+
# More information about the method can be found at https://marigoldmonodepth.github.io
|
19 |
+
# --------------------------------------------------------------------------
|
20 |
+
|
21 |
+
|
22 |
+
import matplotlib
|
23 |
+
import numpy as np
|
24 |
+
import torch
|
25 |
+
from torchvision.transforms import InterpolationMode
|
26 |
+
from torchvision.transforms.functional import resize
|
27 |
+
|
28 |
+
|
29 |
+
def colorize_depth_maps(
|
30 |
+
depth_map, min_depth, max_depth, cmap="Spectral", valid_mask=None
|
31 |
+
):
|
32 |
+
"""
|
33 |
+
Colorize depth maps.
|
34 |
+
"""
|
35 |
+
assert len(depth_map.shape) >= 2, "Invalid dimension"
|
36 |
+
|
37 |
+
if isinstance(depth_map, torch.Tensor):
|
38 |
+
depth = depth_map.detach().squeeze().numpy()
|
39 |
+
elif isinstance(depth_map, np.ndarray):
|
40 |
+
depth = depth_map.copy().squeeze()
|
41 |
+
# reshape to [ (B,) H, W ]
|
42 |
+
if depth.ndim < 3:
|
43 |
+
depth = depth[np.newaxis, :, :]
|
44 |
+
|
45 |
+
# colorize
|
46 |
+
cm = matplotlib.colormaps[cmap]
|
47 |
+
depth = ((depth - min_depth) / (max_depth - min_depth)).clip(0, 1)
|
48 |
+
img_colored_np = cm(depth, bytes=False)[:, :, :, 0:3] # value from 0 to 1
|
49 |
+
img_colored_np = np.rollaxis(img_colored_np, 3, 1)
|
50 |
+
|
51 |
+
if valid_mask is not None:
|
52 |
+
if isinstance(depth_map, torch.Tensor):
|
53 |
+
valid_mask = valid_mask.detach().numpy()
|
54 |
+
valid_mask = valid_mask.squeeze() # [H, W] or [B, H, W]
|
55 |
+
if valid_mask.ndim < 3:
|
56 |
+
valid_mask = valid_mask[np.newaxis, np.newaxis, :, :]
|
57 |
+
else:
|
58 |
+
valid_mask = valid_mask[:, np.newaxis, :, :]
|
59 |
+
valid_mask = np.repeat(valid_mask, 3, axis=1)
|
60 |
+
img_colored_np[~valid_mask] = 0
|
61 |
+
|
62 |
+
if isinstance(depth_map, torch.Tensor):
|
63 |
+
img_colored = torch.from_numpy(img_colored_np).float()
|
64 |
+
elif isinstance(depth_map, np.ndarray):
|
65 |
+
img_colored = img_colored_np
|
66 |
+
|
67 |
+
return img_colored
|
68 |
+
|
69 |
+
|
70 |
+
def chw2hwc(chw):
|
71 |
+
assert 3 == len(chw.shape)
|
72 |
+
if isinstance(chw, torch.Tensor):
|
73 |
+
hwc = torch.permute(chw, (1, 2, 0))
|
74 |
+
elif isinstance(chw, np.ndarray):
|
75 |
+
hwc = np.moveaxis(chw, 0, -1)
|
76 |
+
return hwc
|
77 |
+
|
78 |
+
def resize_max_res(
|
79 |
+
img: torch.Tensor,
|
80 |
+
max_edge_resolution: int,
|
81 |
+
resample_method: InterpolationMode = InterpolationMode.BILINEAR,
|
82 |
+
) -> torch.Tensor:
|
83 |
+
"""
|
84 |
+
Resize image to limit maximum edge length while keeping aspect ratio.
|
85 |
+
|
86 |
+
Args:
|
87 |
+
img (`torch.Tensor`):
|
88 |
+
Image tensor to be resized. Expected shape: [B, C, H, W]
|
89 |
+
max_edge_resolution (`int`):
|
90 |
+
Maximum edge length (pixel).
|
91 |
+
resample_method (`PIL.Image.Resampling`):
|
92 |
+
Resampling method used to resize images.
|
93 |
+
|
94 |
+
Returns:
|
95 |
+
`torch.Tensor`: Resized image.
|
96 |
+
"""
|
97 |
+
assert 4 == img.dim(), f"Invalid input shape {img.shape}"
|
98 |
+
|
99 |
+
original_height, original_width = img.shape[-2:]
|
100 |
+
downscale_factor = min(
|
101 |
+
max_edge_resolution / original_width, max_edge_resolution / original_height
|
102 |
+
)
|
103 |
+
|
104 |
+
new_width = int(original_width * downscale_factor)
|
105 |
+
new_height = int(original_height * downscale_factor)
|
106 |
+
|
107 |
+
resized_img = resize(img, (new_height, new_width), resample_method, antialias=True)
|
108 |
+
return resized_img
|
109 |
+
|
110 |
+
|
111 |
+
def get_tv_resample_method(method_str: str) -> InterpolationMode:
|
112 |
+
resample_method_dict = {
|
113 |
+
"bilinear": InterpolationMode.BILINEAR,
|
114 |
+
"bicubic": InterpolationMode.BICUBIC,
|
115 |
+
"nearest": InterpolationMode.NEAREST_EXACT,
|
116 |
+
"nearest-exact": InterpolationMode.NEAREST_EXACT,
|
117 |
+
}
|
118 |
+
resample_method = resample_method_dict.get(method_str, None)
|
119 |
+
if resample_method is None:
|
120 |
+
raise ValueError(f"Unknown resampling method: {resample_method}")
|
121 |
+
else:
|
122 |
+
return resample_method
|