|
|
|
|
|
import collections |
|
import cupy |
|
import os |
|
import re |
|
import torch |
|
import typing |
|
|
|
|
|
|
|
|
|
|
|
objCudacache = {} |
|
|
|
|
|
def cuda_int32(intIn:int): |
|
return cupy.int32(intIn) |
|
|
|
|
|
|
|
def cuda_float32(fltIn:float): |
|
return cupy.float32(fltIn) |
|
|
|
|
|
|
|
def cuda_kernel(strFunction:str, strKernel:str, objVariables:typing.Dict): |
|
if 'device' not in objCudacache: |
|
objCudacache['device'] = torch.cuda.get_device_name() |
|
|
|
|
|
strKey = strFunction |
|
|
|
for strVariable in objVariables: |
|
objValue = objVariables[strVariable] |
|
|
|
strKey += strVariable |
|
|
|
if objValue is None: |
|
continue |
|
|
|
elif type(objValue) == int: |
|
strKey += str(objValue) |
|
|
|
elif type(objValue) == float: |
|
strKey += str(objValue) |
|
|
|
elif type(objValue) == bool: |
|
strKey += str(objValue) |
|
|
|
elif type(objValue) == str: |
|
strKey += objValue |
|
|
|
elif type(objValue) == torch.Tensor: |
|
strKey += str(objValue.dtype) |
|
strKey += str(objValue.shape) |
|
strKey += str(objValue.stride()) |
|
|
|
elif True: |
|
print(strVariable, type(objValue)) |
|
assert(False) |
|
|
|
|
|
|
|
|
|
strKey += objCudacache['device'] |
|
|
|
if strKey not in objCudacache: |
|
for strVariable in objVariables: |
|
objValue = objVariables[strVariable] |
|
|
|
if objValue is None: |
|
continue |
|
|
|
elif type(objValue) == int: |
|
strKernel = strKernel.replace('{{' + strVariable + '}}', str(objValue)) |
|
|
|
elif type(objValue) == float: |
|
strKernel = strKernel.replace('{{' + strVariable + '}}', str(objValue)) |
|
|
|
elif type(objValue) == bool: |
|
strKernel = strKernel.replace('{{' + strVariable + '}}', str(objValue)) |
|
|
|
elif type(objValue) == str: |
|
strKernel = strKernel.replace('{{' + strVariable + '}}', objValue) |
|
|
|
elif type(objValue) == torch.Tensor and objValue.dtype == torch.uint8: |
|
strKernel = strKernel.replace('{{type}}', 'unsigned char') |
|
|
|
elif type(objValue) == torch.Tensor and objValue.dtype == torch.float16: |
|
strKernel = strKernel.replace('{{type}}', 'half') |
|
|
|
elif type(objValue) == torch.Tensor and objValue.dtype == torch.float32: |
|
strKernel = strKernel.replace('{{type}}', 'float') |
|
|
|
elif type(objValue) == torch.Tensor and objValue.dtype == torch.float64: |
|
strKernel = strKernel.replace('{{type}}', 'double') |
|
|
|
elif type(objValue) == torch.Tensor and objValue.dtype == torch.int32: |
|
strKernel = strKernel.replace('{{type}}', 'int') |
|
|
|
elif type(objValue) == torch.Tensor and objValue.dtype == torch.int64: |
|
strKernel = strKernel.replace('{{type}}', 'long') |
|
|
|
elif type(objValue) == torch.Tensor: |
|
print(strVariable, objValue.dtype) |
|
assert(False) |
|
|
|
elif True: |
|
print(strVariable, type(objValue)) |
|
assert(False) |
|
|
|
|
|
|
|
|
|
while True: |
|
objMatch = re.search('(SIZE_)([0-4])(\()([^\)]*)(\))', strKernel) |
|
|
|
if objMatch is None: |
|
break |
|
|
|
|
|
intArg = int(objMatch.group(2)) |
|
|
|
strTensor = objMatch.group(4) |
|
intSizes = objVariables[strTensor].size() |
|
|
|
strKernel = strKernel.replace(objMatch.group(), str(intSizes[intArg] if torch.is_tensor(intSizes[intArg]) == False else intSizes[intArg].item())) |
|
|
|
|
|
while True: |
|
objMatch = re.search('(OFFSET_)([0-4])(\()', strKernel) |
|
|
|
if objMatch is None: |
|
break |
|
|
|
|
|
intStart = objMatch.span()[1] |
|
intStop = objMatch.span()[1] |
|
intParentheses = 1 |
|
|
|
while True: |
|
intParentheses += 1 if strKernel[intStop] == '(' else 0 |
|
intParentheses -= 1 if strKernel[intStop] == ')' else 0 |
|
|
|
if intParentheses == 0: |
|
break |
|
|
|
|
|
intStop += 1 |
|
|
|
|
|
intArgs = int(objMatch.group(2)) |
|
strArgs = strKernel[intStart:intStop].split(',') |
|
|
|
assert(intArgs == len(strArgs) - 1) |
|
|
|
strTensor = strArgs[0] |
|
intStrides = objVariables[strTensor].stride() |
|
|
|
strIndex = [] |
|
|
|
for intArg in range(intArgs): |
|
strIndex.append('((' + strArgs[intArg + 1].replace('{', '(').replace('}', ')').strip() + ')*' + str(intStrides[intArg] if torch.is_tensor(intStrides[intArg]) == False else intStrides[intArg].item()) + ')') |
|
|
|
|
|
strKernel = strKernel.replace('OFFSET_' + str(intArgs) + '(' + strKernel[intStart:intStop] + ')', '(' + str.join('+', strIndex) + ')') |
|
|
|
|
|
while True: |
|
objMatch = re.search('(VALUE_)([0-4])(\()', strKernel) |
|
|
|
if objMatch is None: |
|
break |
|
|
|
|
|
intStart = objMatch.span()[1] |
|
intStop = objMatch.span()[1] |
|
intParentheses = 1 |
|
|
|
while True: |
|
intParentheses += 1 if strKernel[intStop] == '(' else 0 |
|
intParentheses -= 1 if strKernel[intStop] == ')' else 0 |
|
|
|
if intParentheses == 0: |
|
break |
|
|
|
|
|
intStop += 1 |
|
|
|
|
|
intArgs = int(objMatch.group(2)) |
|
strArgs = strKernel[intStart:intStop].split(',') |
|
|
|
assert(intArgs == len(strArgs) - 1) |
|
|
|
strTensor = strArgs[0] |
|
intStrides = objVariables[strTensor].stride() |
|
|
|
strIndex = [] |
|
|
|
for intArg in range(intArgs): |
|
strIndex.append('((' + strArgs[intArg + 1].replace('{', '(').replace('}', ')').strip() + ')*' + str(intStrides[intArg] if torch.is_tensor(intStrides[intArg]) == False else intStrides[intArg].item()) + ')') |
|
|
|
|
|
strKernel = strKernel.replace('VALUE_' + str(intArgs) + '(' + strKernel[intStart:intStop] + ')', strTensor + '[' + str.join('+', strIndex) + ']') |
|
|
|
|
|
objCudacache[strKey] = { |
|
'strFunction': strFunction, |
|
'strKernel': strKernel |
|
} |
|
|
|
|
|
return strKey |
|
|
|
|
|
|
|
@cupy.memoize(for_each_device=True) |
|
def cuda_launch(strKey:str): |
|
if 'CUDA_HOME' not in os.environ: |
|
os.environ['CUDA_HOME'] = cupy.cuda.get_cuda_path() |
|
|
|
|
|
return cupy.RawKernel(objCudacache[strKey]['strKernel'], objCudacache[strKey]['strFunction'], tuple(['-I ' + os.environ['CUDA_HOME'], '-I ' + os.environ['CUDA_HOME'] + '/include'])) |
|
|
|
|
|
|
|
|
|
|
|
|
|
def softsplat(tenIn:torch.Tensor, tenFlow:torch.Tensor, tenMetric:torch.Tensor, strMode:str): |
|
assert(strMode.split('-')[0] in ['sum', 'avg', 'linear', 'soft']) |
|
|
|
if strMode == 'sum': assert(tenMetric is None) |
|
if strMode == 'avg': assert(tenMetric is None) |
|
if strMode.split('-')[0] == 'linear': assert(tenMetric is not None) |
|
if strMode.split('-')[0] == 'soft': assert(tenMetric is not None) |
|
|
|
if strMode == 'avg': |
|
tenIn = torch.cat([tenIn, tenIn.new_ones([tenIn.shape[0], 1, tenIn.shape[2], tenIn.shape[3]])], 1) |
|
|
|
elif strMode.split('-')[0] == 'linear': |
|
tenIn = torch.cat([tenIn * tenMetric, tenMetric], 1) |
|
|
|
elif strMode.split('-')[0] == 'soft': |
|
tenIn = torch.cat([tenIn * tenMetric.exp(), tenMetric.exp()], 1) |
|
|
|
|
|
|
|
tenOut = softsplat_func.apply(tenIn, tenFlow) |
|
|
|
if strMode.split('-')[0] in ['avg', 'linear', 'soft']: |
|
tenNormalize = tenOut[:, -1:, :, :] |
|
|
|
if len(strMode.split('-')) == 1: |
|
tenNormalize = tenNormalize + 0.0000001 |
|
|
|
elif strMode.split('-')[1] == 'addeps': |
|
tenNormalize = tenNormalize + 0.0000001 |
|
|
|
elif strMode.split('-')[1] == 'zeroeps': |
|
tenNormalize[tenNormalize == 0.0] = 1.0 |
|
|
|
elif strMode.split('-')[1] == 'clipeps': |
|
tenNormalize = tenNormalize.clip(0.0000001, None) |
|
|
|
|
|
|
|
tenOut = tenOut[:, :-1, :, :] / tenNormalize |
|
|
|
|
|
return tenOut |
|
|
|
|
|
|
|
class softsplat_func(torch.autograd.Function): |
|
@staticmethod |
|
@torch.cuda.amp.custom_fwd(cast_inputs=torch.float32) |
|
def forward(self, tenIn, tenFlow): |
|
tenOut = tenIn.new_zeros([tenIn.shape[0], tenIn.shape[1], tenIn.shape[2], tenIn.shape[3]]) |
|
|
|
if tenIn.is_cuda == True: |
|
cuda_launch(cuda_kernel('softsplat_out', ''' |
|
extern "C" __global__ void __launch_bounds__(512) softsplat_out( |
|
const int n, |
|
const {{type}}* __restrict__ tenIn, |
|
const {{type}}* __restrict__ tenFlow, |
|
{{type}}* __restrict__ tenOut |
|
) { for (int intIndex = (blockIdx.x * blockDim.x) + threadIdx.x; intIndex < n; intIndex += blockDim.x * gridDim.x) { |
|
const int intN = ( intIndex / SIZE_3(tenOut) / SIZE_2(tenOut) / SIZE_1(tenOut) ) % SIZE_0(tenOut); |
|
const int intC = ( intIndex / SIZE_3(tenOut) / SIZE_2(tenOut) ) % SIZE_1(tenOut); |
|
const int intY = ( intIndex / SIZE_3(tenOut) ) % SIZE_2(tenOut); |
|
const int intX = ( intIndex ) % SIZE_3(tenOut); |
|
|
|
assert(SIZE_1(tenFlow) == 2); |
|
|
|
{{type}} fltX = ({{type}}) (intX) + VALUE_4(tenFlow, intN, 0, intY, intX); |
|
{{type}} fltY = ({{type}}) (intY) + VALUE_4(tenFlow, intN, 1, intY, intX); |
|
|
|
if (isfinite(fltX) == false) { return; } |
|
if (isfinite(fltY) == false) { return; } |
|
|
|
{{type}} fltIn = VALUE_4(tenIn, intN, intC, intY, intX); |
|
|
|
int intNorthwestX = (int) (floor(fltX)); |
|
int intNorthwestY = (int) (floor(fltY)); |
|
int intNortheastX = intNorthwestX + 1; |
|
int intNortheastY = intNorthwestY; |
|
int intSouthwestX = intNorthwestX; |
|
int intSouthwestY = intNorthwestY + 1; |
|
int intSoutheastX = intNorthwestX + 1; |
|
int intSoutheastY = intNorthwestY + 1; |
|
|
|
{{type}} fltNorthwest = (({{type}}) (intSoutheastX) - fltX) * (({{type}}) (intSoutheastY) - fltY); |
|
{{type}} fltNortheast = (fltX - ({{type}}) (intSouthwestX)) * (({{type}}) (intSouthwestY) - fltY); |
|
{{type}} fltSouthwest = (({{type}}) (intNortheastX) - fltX) * (fltY - ({{type}}) (intNortheastY)); |
|
{{type}} fltSoutheast = (fltX - ({{type}}) (intNorthwestX)) * (fltY - ({{type}}) (intNorthwestY)); |
|
|
|
if ((intNorthwestX >= 0) && (intNorthwestX < SIZE_3(tenOut)) && (intNorthwestY >= 0) && (intNorthwestY < SIZE_2(tenOut))) { |
|
atomicAdd(&tenOut[OFFSET_4(tenOut, intN, intC, intNorthwestY, intNorthwestX)], fltIn * fltNorthwest); |
|
} |
|
|
|
if ((intNortheastX >= 0) && (intNortheastX < SIZE_3(tenOut)) && (intNortheastY >= 0) && (intNortheastY < SIZE_2(tenOut))) { |
|
atomicAdd(&tenOut[OFFSET_4(tenOut, intN, intC, intNortheastY, intNortheastX)], fltIn * fltNortheast); |
|
} |
|
|
|
if ((intSouthwestX >= 0) && (intSouthwestX < SIZE_3(tenOut)) && (intSouthwestY >= 0) && (intSouthwestY < SIZE_2(tenOut))) { |
|
atomicAdd(&tenOut[OFFSET_4(tenOut, intN, intC, intSouthwestY, intSouthwestX)], fltIn * fltSouthwest); |
|
} |
|
|
|
if ((intSoutheastX >= 0) && (intSoutheastX < SIZE_3(tenOut)) && (intSoutheastY >= 0) && (intSoutheastY < SIZE_2(tenOut))) { |
|
atomicAdd(&tenOut[OFFSET_4(tenOut, intN, intC, intSoutheastY, intSoutheastX)], fltIn * fltSoutheast); |
|
} |
|
} } |
|
''', { |
|
'tenIn': tenIn, |
|
'tenFlow': tenFlow, |
|
'tenOut': tenOut |
|
}))( |
|
grid=tuple([int((tenOut.nelement() + 512 - 1) / 512), 1, 1]), |
|
block=tuple([512, 1, 1]), |
|
args=[cuda_int32(tenOut.nelement()), tenIn.data_ptr(), tenFlow.data_ptr(), tenOut.data_ptr()], |
|
stream=collections.namedtuple('Stream', 'ptr')(torch.cuda.current_stream().cuda_stream) |
|
) |
|
|
|
elif tenIn.is_cuda != True: |
|
assert(False) |
|
|
|
|
|
|
|
self.save_for_backward(tenIn, tenFlow) |
|
|
|
return tenOut |
|
|
|
|
|
@staticmethod |
|
@torch.cuda.amp.custom_bwd |
|
def backward(self, tenOutgrad): |
|
tenIn, tenFlow = self.saved_tensors |
|
|
|
tenOutgrad = tenOutgrad.contiguous(); assert(tenOutgrad.is_cuda == True) |
|
|
|
tenIngrad = tenIn.new_zeros([tenIn.shape[0], tenIn.shape[1], tenIn.shape[2], tenIn.shape[3]]) if self.needs_input_grad[0] == True else None |
|
tenFlowgrad = tenFlow.new_zeros([tenFlow.shape[0], tenFlow.shape[1], tenFlow.shape[2], tenFlow.shape[3]]) if self.needs_input_grad[1] == True else None |
|
|
|
if tenIngrad is not None: |
|
cuda_launch(cuda_kernel('softsplat_ingrad', ''' |
|
extern "C" __global__ void __launch_bounds__(512) softsplat_ingrad( |
|
const int n, |
|
const {{type}}* __restrict__ tenIn, |
|
const {{type}}* __restrict__ tenFlow, |
|
const {{type}}* __restrict__ tenOutgrad, |
|
{{type}}* __restrict__ tenIngrad, |
|
{{type}}* __restrict__ tenFlowgrad |
|
) { for (int intIndex = (blockIdx.x * blockDim.x) + threadIdx.x; intIndex < n; intIndex += blockDim.x * gridDim.x) { |
|
const int intN = ( intIndex / SIZE_3(tenIngrad) / SIZE_2(tenIngrad) / SIZE_1(tenIngrad) ) % SIZE_0(tenIngrad); |
|
const int intC = ( intIndex / SIZE_3(tenIngrad) / SIZE_2(tenIngrad) ) % SIZE_1(tenIngrad); |
|
const int intY = ( intIndex / SIZE_3(tenIngrad) ) % SIZE_2(tenIngrad); |
|
const int intX = ( intIndex ) % SIZE_3(tenIngrad); |
|
|
|
assert(SIZE_1(tenFlow) == 2); |
|
|
|
{{type}} fltIngrad = 0.0f; |
|
|
|
{{type}} fltX = ({{type}}) (intX) + VALUE_4(tenFlow, intN, 0, intY, intX); |
|
{{type}} fltY = ({{type}}) (intY) + VALUE_4(tenFlow, intN, 1, intY, intX); |
|
|
|
if (isfinite(fltX) == false) { return; } |
|
if (isfinite(fltY) == false) { return; } |
|
|
|
int intNorthwestX = (int) (floor(fltX)); |
|
int intNorthwestY = (int) (floor(fltY)); |
|
int intNortheastX = intNorthwestX + 1; |
|
int intNortheastY = intNorthwestY; |
|
int intSouthwestX = intNorthwestX; |
|
int intSouthwestY = intNorthwestY + 1; |
|
int intSoutheastX = intNorthwestX + 1; |
|
int intSoutheastY = intNorthwestY + 1; |
|
|
|
{{type}} fltNorthwest = (({{type}}) (intSoutheastX) - fltX) * (({{type}}) (intSoutheastY) - fltY); |
|
{{type}} fltNortheast = (fltX - ({{type}}) (intSouthwestX)) * (({{type}}) (intSouthwestY) - fltY); |
|
{{type}} fltSouthwest = (({{type}}) (intNortheastX) - fltX) * (fltY - ({{type}}) (intNortheastY)); |
|
{{type}} fltSoutheast = (fltX - ({{type}}) (intNorthwestX)) * (fltY - ({{type}}) (intNorthwestY)); |
|
|
|
if ((intNorthwestX >= 0) && (intNorthwestX < SIZE_3(tenOutgrad)) && (intNorthwestY >= 0) && (intNorthwestY < SIZE_2(tenOutgrad))) { |
|
fltIngrad += VALUE_4(tenOutgrad, intN, intC, intNorthwestY, intNorthwestX) * fltNorthwest; |
|
} |
|
|
|
if ((intNortheastX >= 0) && (intNortheastX < SIZE_3(tenOutgrad)) && (intNortheastY >= 0) && (intNortheastY < SIZE_2(tenOutgrad))) { |
|
fltIngrad += VALUE_4(tenOutgrad, intN, intC, intNortheastY, intNortheastX) * fltNortheast; |
|
} |
|
|
|
if ((intSouthwestX >= 0) && (intSouthwestX < SIZE_3(tenOutgrad)) && (intSouthwestY >= 0) && (intSouthwestY < SIZE_2(tenOutgrad))) { |
|
fltIngrad += VALUE_4(tenOutgrad, intN, intC, intSouthwestY, intSouthwestX) * fltSouthwest; |
|
} |
|
|
|
if ((intSoutheastX >= 0) && (intSoutheastX < SIZE_3(tenOutgrad)) && (intSoutheastY >= 0) && (intSoutheastY < SIZE_2(tenOutgrad))) { |
|
fltIngrad += VALUE_4(tenOutgrad, intN, intC, intSoutheastY, intSoutheastX) * fltSoutheast; |
|
} |
|
|
|
tenIngrad[intIndex] = fltIngrad; |
|
} } |
|
''', { |
|
'tenIn': tenIn, |
|
'tenFlow': tenFlow, |
|
'tenOutgrad': tenOutgrad, |
|
'tenIngrad': tenIngrad, |
|
'tenFlowgrad': tenFlowgrad |
|
}))( |
|
grid=tuple([int((tenIngrad.nelement() + 512 - 1) / 512), 1, 1]), |
|
block=tuple([512, 1, 1]), |
|
args=[cuda_int32(tenIngrad.nelement()), tenIn.data_ptr(), tenFlow.data_ptr(), tenOutgrad.data_ptr(), tenIngrad.data_ptr(), None], |
|
stream=collections.namedtuple('Stream', 'ptr')(torch.cuda.current_stream().cuda_stream) |
|
) |
|
|
|
|
|
if tenFlowgrad is not None: |
|
cuda_launch(cuda_kernel('softsplat_flowgrad', ''' |
|
extern "C" __global__ void __launch_bounds__(512) softsplat_flowgrad( |
|
const int n, |
|
const {{type}}* __restrict__ tenIn, |
|
const {{type}}* __restrict__ tenFlow, |
|
const {{type}}* __restrict__ tenOutgrad, |
|
{{type}}* __restrict__ tenIngrad, |
|
{{type}}* __restrict__ tenFlowgrad |
|
) { for (int intIndex = (blockIdx.x * blockDim.x) + threadIdx.x; intIndex < n; intIndex += blockDim.x * gridDim.x) { |
|
const int intN = ( intIndex / SIZE_3(tenFlowgrad) / SIZE_2(tenFlowgrad) / SIZE_1(tenFlowgrad) ) % SIZE_0(tenFlowgrad); |
|
const int intC = ( intIndex / SIZE_3(tenFlowgrad) / SIZE_2(tenFlowgrad) ) % SIZE_1(tenFlowgrad); |
|
const int intY = ( intIndex / SIZE_3(tenFlowgrad) ) % SIZE_2(tenFlowgrad); |
|
const int intX = ( intIndex ) % SIZE_3(tenFlowgrad); |
|
|
|
assert(SIZE_1(tenFlow) == 2); |
|
|
|
{{type}} fltFlowgrad = 0.0f; |
|
|
|
{{type}} fltX = ({{type}}) (intX) + VALUE_4(tenFlow, intN, 0, intY, intX); |
|
{{type}} fltY = ({{type}}) (intY) + VALUE_4(tenFlow, intN, 1, intY, intX); |
|
|
|
if (isfinite(fltX) == false) { return; } |
|
if (isfinite(fltY) == false) { return; } |
|
|
|
int intNorthwestX = (int) (floor(fltX)); |
|
int intNorthwestY = (int) (floor(fltY)); |
|
int intNortheastX = intNorthwestX + 1; |
|
int intNortheastY = intNorthwestY; |
|
int intSouthwestX = intNorthwestX; |
|
int intSouthwestY = intNorthwestY + 1; |
|
int intSoutheastX = intNorthwestX + 1; |
|
int intSoutheastY = intNorthwestY + 1; |
|
|
|
{{type}} fltNorthwest = 0.0f; |
|
{{type}} fltNortheast = 0.0f; |
|
{{type}} fltSouthwest = 0.0f; |
|
{{type}} fltSoutheast = 0.0f; |
|
|
|
if (intC == 0) { |
|
fltNorthwest = (({{type}}) (-1.0f)) * (({{type}}) (intSoutheastY) - fltY); |
|
fltNortheast = (({{type}}) (+1.0f)) * (({{type}}) (intSouthwestY) - fltY); |
|
fltSouthwest = (({{type}}) (-1.0f)) * (fltY - ({{type}}) (intNortheastY)); |
|
fltSoutheast = (({{type}}) (+1.0f)) * (fltY - ({{type}}) (intNorthwestY)); |
|
|
|
} else if (intC == 1) { |
|
fltNorthwest = (({{type}}) (intSoutheastX) - fltX) * (({{type}}) (-1.0f)); |
|
fltNortheast = (fltX - ({{type}}) (intSouthwestX)) * (({{type}}) (-1.0f)); |
|
fltSouthwest = (({{type}}) (intNortheastX) - fltX) * (({{type}}) (+1.0f)); |
|
fltSoutheast = (fltX - ({{type}}) (intNorthwestX)) * (({{type}}) (+1.0f)); |
|
|
|
} |
|
|
|
for (int intChannel = 0; intChannel < SIZE_1(tenOutgrad); intChannel += 1) { |
|
{{type}} fltIn = VALUE_4(tenIn, intN, intChannel, intY, intX); |
|
|
|
if ((intNorthwestX >= 0) && (intNorthwestX < SIZE_3(tenOutgrad)) && (intNorthwestY >= 0) && (intNorthwestY < SIZE_2(tenOutgrad))) { |
|
fltFlowgrad += VALUE_4(tenOutgrad, intN, intChannel, intNorthwestY, intNorthwestX) * fltIn * fltNorthwest; |
|
} |
|
|
|
if ((intNortheastX >= 0) && (intNortheastX < SIZE_3(tenOutgrad)) && (intNortheastY >= 0) && (intNortheastY < SIZE_2(tenOutgrad))) { |
|
fltFlowgrad += VALUE_4(tenOutgrad, intN, intChannel, intNortheastY, intNortheastX) * fltIn * fltNortheast; |
|
} |
|
|
|
if ((intSouthwestX >= 0) && (intSouthwestX < SIZE_3(tenOutgrad)) && (intSouthwestY >= 0) && (intSouthwestY < SIZE_2(tenOutgrad))) { |
|
fltFlowgrad += VALUE_4(tenOutgrad, intN, intChannel, intSouthwestY, intSouthwestX) * fltIn * fltSouthwest; |
|
} |
|
|
|
if ((intSoutheastX >= 0) && (intSoutheastX < SIZE_3(tenOutgrad)) && (intSoutheastY >= 0) && (intSoutheastY < SIZE_2(tenOutgrad))) { |
|
fltFlowgrad += VALUE_4(tenOutgrad, intN, intChannel, intSoutheastY, intSoutheastX) * fltIn * fltSoutheast; |
|
} |
|
} |
|
|
|
tenFlowgrad[intIndex] = fltFlowgrad; |
|
} } |
|
''', { |
|
'tenIn': tenIn, |
|
'tenFlow': tenFlow, |
|
'tenOutgrad': tenOutgrad, |
|
'tenIngrad': tenIngrad, |
|
'tenFlowgrad': tenFlowgrad |
|
}))( |
|
grid=tuple([int((tenFlowgrad.nelement() + 512 - 1) / 512), 1, 1]), |
|
block=tuple([512, 1, 1]), |
|
args=[cuda_int32(tenFlowgrad.nelement()), tenIn.data_ptr(), tenFlow.data_ptr(), tenOutgrad.data_ptr(), None, tenFlowgrad.data_ptr()], |
|
stream=collections.namedtuple('Stream', 'ptr')(torch.cuda.current_stream().cuda_stream) |
|
) |
|
|
|
|
|
return tenIngrad, tenFlowgrad |
|
|
|
|
|
|