#!/usr/bin/env python import collections import cupy import os import re import torch import typing ########################################################## objCudacache = {} def cuda_int32(intIn:int): return cupy.int32(intIn) # end def cuda_float32(fltIn:float): return cupy.float32(fltIn) # end def cuda_kernel(strFunction:str, strKernel:str, objVariables:typing.Dict): if 'device' not in objCudacache: objCudacache['device'] = torch.cuda.get_device_name() # end strKey = strFunction for strVariable in objVariables: objValue = objVariables[strVariable] strKey += strVariable if objValue is None: continue elif type(objValue) == int: strKey += str(objValue) elif type(objValue) == float: strKey += str(objValue) elif type(objValue) == bool: strKey += str(objValue) elif type(objValue) == str: strKey += objValue elif type(objValue) == torch.Tensor: strKey += str(objValue.dtype) strKey += str(objValue.shape) strKey += str(objValue.stride()) elif True: print(strVariable, type(objValue)) assert(False) # end # end strKey += objCudacache['device'] if strKey not in objCudacache: for strVariable in objVariables: objValue = objVariables[strVariable] if objValue is None: continue elif type(objValue) == int: strKernel = strKernel.replace('{{' + strVariable + '}}', str(objValue)) elif type(objValue) == float: strKernel = strKernel.replace('{{' + strVariable + '}}', str(objValue)) elif type(objValue) == bool: strKernel = strKernel.replace('{{' + strVariable + '}}', str(objValue)) elif type(objValue) == str: strKernel = strKernel.replace('{{' + strVariable + '}}', objValue) elif type(objValue) == torch.Tensor and objValue.dtype == torch.uint8: strKernel = strKernel.replace('{{type}}', 'unsigned char') elif type(objValue) == torch.Tensor and objValue.dtype == torch.float16: strKernel = strKernel.replace('{{type}}', 'half') elif type(objValue) == torch.Tensor and objValue.dtype == torch.float32: strKernel = strKernel.replace('{{type}}', 'float') elif type(objValue) == torch.Tensor and objValue.dtype == torch.float64: strKernel = strKernel.replace('{{type}}', 'double') elif type(objValue) == torch.Tensor and objValue.dtype == torch.int32: strKernel = strKernel.replace('{{type}}', 'int') elif type(objValue) == torch.Tensor and objValue.dtype == torch.int64: strKernel = strKernel.replace('{{type}}', 'long') elif type(objValue) == torch.Tensor: print(strVariable, objValue.dtype) assert(False) elif True: print(strVariable, type(objValue)) assert(False) # end # end while True: objMatch = re.search('(SIZE_)([0-4])(\()([^\)]*)(\))', strKernel) if objMatch is None: break # end intArg = int(objMatch.group(2)) strTensor = objMatch.group(4) intSizes = objVariables[strTensor].size() strKernel = strKernel.replace(objMatch.group(), str(intSizes[intArg] if torch.is_tensor(intSizes[intArg]) == False else intSizes[intArg].item())) # end while True: objMatch = re.search('(OFFSET_)([0-4])(\()', strKernel) if objMatch is None: break # end intStart = objMatch.span()[1] intStop = objMatch.span()[1] intParentheses = 1 while True: intParentheses += 1 if strKernel[intStop] == '(' else 0 intParentheses -= 1 if strKernel[intStop] == ')' else 0 if intParentheses == 0: break # end intStop += 1 # end intArgs = int(objMatch.group(2)) strArgs = strKernel[intStart:intStop].split(',') assert(intArgs == len(strArgs) - 1) strTensor = strArgs[0] intStrides = objVariables[strTensor].stride() strIndex = [] for intArg in range(intArgs): strIndex.append('((' + strArgs[intArg + 1].replace('{', '(').replace('}', ')').strip() + ')*' + str(intStrides[intArg] if torch.is_tensor(intStrides[intArg]) == False else intStrides[intArg].item()) + ')') # end strKernel = strKernel.replace('OFFSET_' + str(intArgs) + '(' + strKernel[intStart:intStop] + ')', '(' + str.join('+', strIndex) + ')') # end while True: objMatch = re.search('(VALUE_)([0-4])(\()', strKernel) if objMatch is None: break # end intStart = objMatch.span()[1] intStop = objMatch.span()[1] intParentheses = 1 while True: intParentheses += 1 if strKernel[intStop] == '(' else 0 intParentheses -= 1 if strKernel[intStop] == ')' else 0 if intParentheses == 0: break # end intStop += 1 # end intArgs = int(objMatch.group(2)) strArgs = strKernel[intStart:intStop].split(',') assert(intArgs == len(strArgs) - 1) strTensor = strArgs[0] intStrides = objVariables[strTensor].stride() strIndex = [] for intArg in range(intArgs): strIndex.append('((' + strArgs[intArg + 1].replace('{', '(').replace('}', ')').strip() + ')*' + str(intStrides[intArg] if torch.is_tensor(intStrides[intArg]) == False else intStrides[intArg].item()) + ')') # end strKernel = strKernel.replace('VALUE_' + str(intArgs) + '(' + strKernel[intStart:intStop] + ')', strTensor + '[' + str.join('+', strIndex) + ']') # end objCudacache[strKey] = { 'strFunction': strFunction, 'strKernel': strKernel } # end return strKey # end @cupy.memoize(for_each_device=True) def cuda_launch(strKey:str): if 'CUDA_HOME' not in os.environ: os.environ['CUDA_HOME'] = cupy.cuda.get_cuda_path() # end return cupy.RawKernel(objCudacache[strKey]['strKernel'], objCudacache[strKey]['strFunction'], tuple(['-I ' + os.environ['CUDA_HOME'], '-I ' + os.environ['CUDA_HOME'] + '/include'])) # end ########################################################## def softsplat(tenIn:torch.Tensor, tenFlow:torch.Tensor, tenMetric:torch.Tensor, strMode:str): assert(strMode.split('-')[0] in ['sum', 'avg', 'linear', 'soft']) if strMode == 'sum': assert(tenMetric is None) if strMode == 'avg': assert(tenMetric is None) if strMode.split('-')[0] == 'linear': assert(tenMetric is not None) if strMode.split('-')[0] == 'soft': assert(tenMetric is not None) if strMode == 'avg': tenIn = torch.cat([tenIn, tenIn.new_ones([tenIn.shape[0], 1, tenIn.shape[2], tenIn.shape[3]])], 1) elif strMode.split('-')[0] == 'linear': tenIn = torch.cat([tenIn * tenMetric, tenMetric], 1) elif strMode.split('-')[0] == 'soft': tenIn = torch.cat([tenIn * tenMetric.exp(), tenMetric.exp()], 1) # end tenOut = softsplat_func.apply(tenIn, tenFlow) if strMode.split('-')[0] in ['avg', 'linear', 'soft']: tenNormalize = tenOut[:, -1:, :, :] if len(strMode.split('-')) == 1: tenNormalize = tenNormalize + 0.0000001 elif strMode.split('-')[1] == 'addeps': tenNormalize = tenNormalize + 0.0000001 elif strMode.split('-')[1] == 'zeroeps': tenNormalize[tenNormalize == 0.0] = 1.0 elif strMode.split('-')[1] == 'clipeps': tenNormalize = tenNormalize.clip(0.0000001, None) # end tenOut = tenOut[:, :-1, :, :] / tenNormalize # end return tenOut # end class softsplat_func(torch.autograd.Function): @staticmethod @torch.cuda.amp.custom_fwd(cast_inputs=torch.float32) def forward(self, tenIn, tenFlow): tenOut = tenIn.new_zeros([tenIn.shape[0], tenIn.shape[1], tenIn.shape[2], tenIn.shape[3]]) if tenIn.is_cuda == True: cuda_launch(cuda_kernel('softsplat_out', ''' extern "C" __global__ void __launch_bounds__(512) softsplat_out( const int n, const {{type}}* __restrict__ tenIn, const {{type}}* __restrict__ tenFlow, {{type}}* __restrict__ tenOut ) { for (int intIndex = (blockIdx.x * blockDim.x) + threadIdx.x; intIndex < n; intIndex += blockDim.x * gridDim.x) { const int intN = ( intIndex / SIZE_3(tenOut) / SIZE_2(tenOut) / SIZE_1(tenOut) ) % SIZE_0(tenOut); const int intC = ( intIndex / SIZE_3(tenOut) / SIZE_2(tenOut) ) % SIZE_1(tenOut); const int intY = ( intIndex / SIZE_3(tenOut) ) % SIZE_2(tenOut); const int intX = ( intIndex ) % SIZE_3(tenOut); assert(SIZE_1(tenFlow) == 2); {{type}} fltX = ({{type}}) (intX) + VALUE_4(tenFlow, intN, 0, intY, intX); {{type}} fltY = ({{type}}) (intY) + VALUE_4(tenFlow, intN, 1, intY, intX); if (isfinite(fltX) == false) { return; } if (isfinite(fltY) == false) { return; } {{type}} fltIn = VALUE_4(tenIn, intN, intC, intY, intX); int intNorthwestX = (int) (floor(fltX)); int intNorthwestY = (int) (floor(fltY)); int intNortheastX = intNorthwestX + 1; int intNortheastY = intNorthwestY; int intSouthwestX = intNorthwestX; int intSouthwestY = intNorthwestY + 1; int intSoutheastX = intNorthwestX + 1; int intSoutheastY = intNorthwestY + 1; {{type}} fltNorthwest = (({{type}}) (intSoutheastX) - fltX) * (({{type}}) (intSoutheastY) - fltY); {{type}} fltNortheast = (fltX - ({{type}}) (intSouthwestX)) * (({{type}}) (intSouthwestY) - fltY); {{type}} fltSouthwest = (({{type}}) (intNortheastX) - fltX) * (fltY - ({{type}}) (intNortheastY)); {{type}} fltSoutheast = (fltX - ({{type}}) (intNorthwestX)) * (fltY - ({{type}}) (intNorthwestY)); if ((intNorthwestX >= 0) && (intNorthwestX < SIZE_3(tenOut)) && (intNorthwestY >= 0) && (intNorthwestY < SIZE_2(tenOut))) { atomicAdd(&tenOut[OFFSET_4(tenOut, intN, intC, intNorthwestY, intNorthwestX)], fltIn * fltNorthwest); } if ((intNortheastX >= 0) && (intNortheastX < SIZE_3(tenOut)) && (intNortheastY >= 0) && (intNortheastY < SIZE_2(tenOut))) { atomicAdd(&tenOut[OFFSET_4(tenOut, intN, intC, intNortheastY, intNortheastX)], fltIn * fltNortheast); } if ((intSouthwestX >= 0) && (intSouthwestX < SIZE_3(tenOut)) && (intSouthwestY >= 0) && (intSouthwestY < SIZE_2(tenOut))) { atomicAdd(&tenOut[OFFSET_4(tenOut, intN, intC, intSouthwestY, intSouthwestX)], fltIn * fltSouthwest); } if ((intSoutheastX >= 0) && (intSoutheastX < SIZE_3(tenOut)) && (intSoutheastY >= 0) && (intSoutheastY < SIZE_2(tenOut))) { atomicAdd(&tenOut[OFFSET_4(tenOut, intN, intC, intSoutheastY, intSoutheastX)], fltIn * fltSoutheast); } } } ''', { 'tenIn': tenIn, 'tenFlow': tenFlow, 'tenOut': tenOut }))( grid=tuple([int((tenOut.nelement() + 512 - 1) / 512), 1, 1]), block=tuple([512, 1, 1]), args=[cuda_int32(tenOut.nelement()), tenIn.data_ptr(), tenFlow.data_ptr(), tenOut.data_ptr()], stream=collections.namedtuple('Stream', 'ptr')(torch.cuda.current_stream().cuda_stream) ) elif tenIn.is_cuda != True: assert(False) # end self.save_for_backward(tenIn, tenFlow) return tenOut # end @staticmethod @torch.cuda.amp.custom_bwd def backward(self, tenOutgrad): tenIn, tenFlow = self.saved_tensors tenOutgrad = tenOutgrad.contiguous(); assert(tenOutgrad.is_cuda == True) tenIngrad = tenIn.new_zeros([tenIn.shape[0], tenIn.shape[1], tenIn.shape[2], tenIn.shape[3]]) if self.needs_input_grad[0] == True else None tenFlowgrad = tenFlow.new_zeros([tenFlow.shape[0], tenFlow.shape[1], tenFlow.shape[2], tenFlow.shape[3]]) if self.needs_input_grad[1] == True else None if tenIngrad is not None: cuda_launch(cuda_kernel('softsplat_ingrad', ''' extern "C" __global__ void __launch_bounds__(512) softsplat_ingrad( const int n, const {{type}}* __restrict__ tenIn, const {{type}}* __restrict__ tenFlow, const {{type}}* __restrict__ tenOutgrad, {{type}}* __restrict__ tenIngrad, {{type}}* __restrict__ tenFlowgrad ) { for (int intIndex = (blockIdx.x * blockDim.x) + threadIdx.x; intIndex < n; intIndex += blockDim.x * gridDim.x) { const int intN = ( intIndex / SIZE_3(tenIngrad) / SIZE_2(tenIngrad) / SIZE_1(tenIngrad) ) % SIZE_0(tenIngrad); const int intC = ( intIndex / SIZE_3(tenIngrad) / SIZE_2(tenIngrad) ) % SIZE_1(tenIngrad); const int intY = ( intIndex / SIZE_3(tenIngrad) ) % SIZE_2(tenIngrad); const int intX = ( intIndex ) % SIZE_3(tenIngrad); assert(SIZE_1(tenFlow) == 2); {{type}} fltIngrad = 0.0f; {{type}} fltX = ({{type}}) (intX) + VALUE_4(tenFlow, intN, 0, intY, intX); {{type}} fltY = ({{type}}) (intY) + VALUE_4(tenFlow, intN, 1, intY, intX); if (isfinite(fltX) == false) { return; } if (isfinite(fltY) == false) { return; } int intNorthwestX = (int) (floor(fltX)); int intNorthwestY = (int) (floor(fltY)); int intNortheastX = intNorthwestX + 1; int intNortheastY = intNorthwestY; int intSouthwestX = intNorthwestX; int intSouthwestY = intNorthwestY + 1; int intSoutheastX = intNorthwestX + 1; int intSoutheastY = intNorthwestY + 1; {{type}} fltNorthwest = (({{type}}) (intSoutheastX) - fltX) * (({{type}}) (intSoutheastY) - fltY); {{type}} fltNortheast = (fltX - ({{type}}) (intSouthwestX)) * (({{type}}) (intSouthwestY) - fltY); {{type}} fltSouthwest = (({{type}}) (intNortheastX) - fltX) * (fltY - ({{type}}) (intNortheastY)); {{type}} fltSoutheast = (fltX - ({{type}}) (intNorthwestX)) * (fltY - ({{type}}) (intNorthwestY)); if ((intNorthwestX >= 0) && (intNorthwestX < SIZE_3(tenOutgrad)) && (intNorthwestY >= 0) && (intNorthwestY < SIZE_2(tenOutgrad))) { fltIngrad += VALUE_4(tenOutgrad, intN, intC, intNorthwestY, intNorthwestX) * fltNorthwest; } if ((intNortheastX >= 0) && (intNortheastX < SIZE_3(tenOutgrad)) && (intNortheastY >= 0) && (intNortheastY < SIZE_2(tenOutgrad))) { fltIngrad += VALUE_4(tenOutgrad, intN, intC, intNortheastY, intNortheastX) * fltNortheast; } if ((intSouthwestX >= 0) && (intSouthwestX < SIZE_3(tenOutgrad)) && (intSouthwestY >= 0) && (intSouthwestY < SIZE_2(tenOutgrad))) { fltIngrad += VALUE_4(tenOutgrad, intN, intC, intSouthwestY, intSouthwestX) * fltSouthwest; } if ((intSoutheastX >= 0) && (intSoutheastX < SIZE_3(tenOutgrad)) && (intSoutheastY >= 0) && (intSoutheastY < SIZE_2(tenOutgrad))) { fltIngrad += VALUE_4(tenOutgrad, intN, intC, intSoutheastY, intSoutheastX) * fltSoutheast; } tenIngrad[intIndex] = fltIngrad; } } ''', { 'tenIn': tenIn, 'tenFlow': tenFlow, 'tenOutgrad': tenOutgrad, 'tenIngrad': tenIngrad, 'tenFlowgrad': tenFlowgrad }))( grid=tuple([int((tenIngrad.nelement() + 512 - 1) / 512), 1, 1]), block=tuple([512, 1, 1]), args=[cuda_int32(tenIngrad.nelement()), tenIn.data_ptr(), tenFlow.data_ptr(), tenOutgrad.data_ptr(), tenIngrad.data_ptr(), None], stream=collections.namedtuple('Stream', 'ptr')(torch.cuda.current_stream().cuda_stream) ) # end if tenFlowgrad is not None: cuda_launch(cuda_kernel('softsplat_flowgrad', ''' extern "C" __global__ void __launch_bounds__(512) softsplat_flowgrad( const int n, const {{type}}* __restrict__ tenIn, const {{type}}* __restrict__ tenFlow, const {{type}}* __restrict__ tenOutgrad, {{type}}* __restrict__ tenIngrad, {{type}}* __restrict__ tenFlowgrad ) { for (int intIndex = (blockIdx.x * blockDim.x) + threadIdx.x; intIndex < n; intIndex += blockDim.x * gridDim.x) { const int intN = ( intIndex / SIZE_3(tenFlowgrad) / SIZE_2(tenFlowgrad) / SIZE_1(tenFlowgrad) ) % SIZE_0(tenFlowgrad); const int intC = ( intIndex / SIZE_3(tenFlowgrad) / SIZE_2(tenFlowgrad) ) % SIZE_1(tenFlowgrad); const int intY = ( intIndex / SIZE_3(tenFlowgrad) ) % SIZE_2(tenFlowgrad); const int intX = ( intIndex ) % SIZE_3(tenFlowgrad); assert(SIZE_1(tenFlow) == 2); {{type}} fltFlowgrad = 0.0f; {{type}} fltX = ({{type}}) (intX) + VALUE_4(tenFlow, intN, 0, intY, intX); {{type}} fltY = ({{type}}) (intY) + VALUE_4(tenFlow, intN, 1, intY, intX); if (isfinite(fltX) == false) { return; } if (isfinite(fltY) == false) { return; } int intNorthwestX = (int) (floor(fltX)); int intNorthwestY = (int) (floor(fltY)); int intNortheastX = intNorthwestX + 1; int intNortheastY = intNorthwestY; int intSouthwestX = intNorthwestX; int intSouthwestY = intNorthwestY + 1; int intSoutheastX = intNorthwestX + 1; int intSoutheastY = intNorthwestY + 1; {{type}} fltNorthwest = 0.0f; {{type}} fltNortheast = 0.0f; {{type}} fltSouthwest = 0.0f; {{type}} fltSoutheast = 0.0f; if (intC == 0) { fltNorthwest = (({{type}}) (-1.0f)) * (({{type}}) (intSoutheastY) - fltY); fltNortheast = (({{type}}) (+1.0f)) * (({{type}}) (intSouthwestY) - fltY); fltSouthwest = (({{type}}) (-1.0f)) * (fltY - ({{type}}) (intNortheastY)); fltSoutheast = (({{type}}) (+1.0f)) * (fltY - ({{type}}) (intNorthwestY)); } else if (intC == 1) { fltNorthwest = (({{type}}) (intSoutheastX) - fltX) * (({{type}}) (-1.0f)); fltNortheast = (fltX - ({{type}}) (intSouthwestX)) * (({{type}}) (-1.0f)); fltSouthwest = (({{type}}) (intNortheastX) - fltX) * (({{type}}) (+1.0f)); fltSoutheast = (fltX - ({{type}}) (intNorthwestX)) * (({{type}}) (+1.0f)); } for (int intChannel = 0; intChannel < SIZE_1(tenOutgrad); intChannel += 1) { {{type}} fltIn = VALUE_4(tenIn, intN, intChannel, intY, intX); if ((intNorthwestX >= 0) && (intNorthwestX < SIZE_3(tenOutgrad)) && (intNorthwestY >= 0) && (intNorthwestY < SIZE_2(tenOutgrad))) { fltFlowgrad += VALUE_4(tenOutgrad, intN, intChannel, intNorthwestY, intNorthwestX) * fltIn * fltNorthwest; } if ((intNortheastX >= 0) && (intNortheastX < SIZE_3(tenOutgrad)) && (intNortheastY >= 0) && (intNortheastY < SIZE_2(tenOutgrad))) { fltFlowgrad += VALUE_4(tenOutgrad, intN, intChannel, intNortheastY, intNortheastX) * fltIn * fltNortheast; } if ((intSouthwestX >= 0) && (intSouthwestX < SIZE_3(tenOutgrad)) && (intSouthwestY >= 0) && (intSouthwestY < SIZE_2(tenOutgrad))) { fltFlowgrad += VALUE_4(tenOutgrad, intN, intChannel, intSouthwestY, intSouthwestX) * fltIn * fltSouthwest; } if ((intSoutheastX >= 0) && (intSoutheastX < SIZE_3(tenOutgrad)) && (intSoutheastY >= 0) && (intSoutheastY < SIZE_2(tenOutgrad))) { fltFlowgrad += VALUE_4(tenOutgrad, intN, intChannel, intSoutheastY, intSoutheastX) * fltIn * fltSoutheast; } } tenFlowgrad[intIndex] = fltFlowgrad; } } ''', { 'tenIn': tenIn, 'tenFlow': tenFlow, 'tenOutgrad': tenOutgrad, 'tenIngrad': tenIngrad, 'tenFlowgrad': tenFlowgrad }))( grid=tuple([int((tenFlowgrad.nelement() + 512 - 1) / 512), 1, 1]), block=tuple([512, 1, 1]), args=[cuda_int32(tenFlowgrad.nelement()), tenIn.data_ptr(), tenFlow.data_ptr(), tenOutgrad.data_ptr(), None, tenFlowgrad.data_ptr()], stream=collections.namedtuple('Stream', 'ptr')(torch.cuda.current_stream().cuda_stream) ) # end return tenIngrad, tenFlowgrad # end # end