File size: 38,371 Bytes
ebca029 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 |
# Copyright 2023 Bingxin Ke, ETH Zurich. All rights reserved.
# Last modified: 2024-05-24
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# --------------------------------------------------------------------------
# If you find this code useful, we kindly ask you to cite our paper in your work.
# Please find bibtex at: https://github.com/prs-eth/Marigold#-citation
# More information about the method can be found at https://marigoldmonodepth.github.io
# --------------------------------------------------------------------------
import logging
from diffusers.image_processor import VaeImageProcessor
import pdb
from typing import Dict, Optional, Union
import PIL.Image
import numpy as np
import torch
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LCMScheduler,
PNDMScheduler,
UNet2DConditionModel,
)
from .duplicate_unet import DoubleUNet2DConditionModel
from torch.nn import Conv2d
from PIL import ImageDraw, ImageFont
from torch.nn.parameter import Parameter
from diffusers.utils import BaseOutput, make_image_grid
from PIL import Image
from torch.utils.data import DataLoader, TensorDataset
from torchvision.transforms import InterpolationMode
from torchvision.transforms.functional import pil_to_tensor, resize
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer
from .util.batchsize import find_batch_size
from .util.ensemble import ensemble_depth
from .util.image_util import (
chw2hwc,
colorize_depth_maps,
get_tv_resample_method,
resize_max_res,
)
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
"""
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
"""
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
# rescale the results from guidance (fixes overexposure)
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
return noise_cfg
class MarigoldDepthOutput(BaseOutput):
"""
Output class for Marigold monocular depth prediction pipeline.
Args:
depth_np (`np.ndarray`):
Predicted depth map, with depth values in the range of [0, 1].
depth_colored (`PIL.Image.Image`):
Colorized depth map, with the shape of [3, H, W] and values in [0, 1].
uncertainty (`None` or `np.ndarray`):
Uncalibrated uncertainty(MAD, median absolute deviation) coming from ensembling.
"""
depth_np: np.ndarray
depth_colored: Union[None, Image.Image]
uncertainty: Union[None, np.ndarray]
class MarigoldInpaintPipeline(DiffusionPipeline):
"""
Pipeline for monocular depth estimation using Marigold: https://marigoldmonodepth.github.io.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
unet (`UNet2DConditionModel`):
Conditional U-Net to denoise the depth latent, conditioned on image latent.
vae (`AutoencoderKL`):
Variational Auto-Encoder (VAE) Model to encode and decode images and depth maps
to and from latent representations.
scheduler (`DDIMScheduler`):
A scheduler to be used in combination with `unet` to denoise the encoded image latents.
text_encoder (`CLIPTextModel`):
Text-encoder, for empty text embedding.
tokenizer (`CLIPTokenizer`):
CLIP tokenizer.
scale_invariant (`bool`, *optional*):
A model property specifying whether the predicted depth maps are scale-invariant. This value must be set in
the model config. When used together with the `shift_invariant=True` flag, the model is also called
"affine-invariant". NB: overriding this value is not supported.
shift_invariant (`bool`, *optional*):
A model property specifying whether the predicted depth maps are shift-invariant. This value must be set in
the model config. When used together with the `scale_invariant=True` flag, the model is also called
"affine-invariant". NB: overriding this value is not supported.
default_denoising_steps (`int`, *optional*):
The minimum number of denoising diffusion steps that are required to produce a prediction of reasonable
quality with the given model. This value must be set in the model config. When the pipeline is called
without explicitly setting `num_inference_steps`, the default value is used. This is required to ensure
reasonable results with various model flavors compatible with the pipeline, such as those relying on very
short denoising schedules (`LCMScheduler`) and those with full diffusion schedules (`DDIMScheduler`).
default_processing_resolution (`int`, *optional*):
The recommended value of the `processing_resolution` parameter of the pipeline. This value must be set in
the model config. When the pipeline is called without explicitly setting `processing_resolution`, the
default value is used. This is required to ensure reasonable results with various model flavors trained
with varying optimal processing resolution values.
"""
rgb_latent_scale_factor = 0.18215
depth_latent_scale_factor = 0.18215
def __init__(
self,
unet: DoubleUNet2DConditionModel,
vae: AutoencoderKL,
scheduler: Union[DDIMScheduler, LCMScheduler],
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
scale_invariant: Optional[bool] = True,
shift_invariant: Optional[bool] = True,
default_denoising_steps: Optional[int] = None,
default_processing_resolution: Optional[int] = None,
requires_safety_checker: bool = False,
):
super().__init__()
self.register_modules(
unet=unet,
vae=vae,
scheduler=scheduler,
text_encoder=text_encoder,
tokenizer=tokenizer,
)
self.register_to_config(
scale_invariant=scale_invariant,
shift_invariant=shift_invariant,
default_denoising_steps=default_denoising_steps,
default_processing_resolution=default_processing_resolution,
)
self.scale_invariant = scale_invariant
self.shift_invariant = shift_invariant
self.default_denoising_steps = default_denoising_steps
self.default_processing_resolution = default_processing_resolution
self.rgb_scheduler = None
self.depth_scheduler = None
self.empty_text_embed = None
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
self.mask_processor = VaeImageProcessor(
vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True
)
self.register_to_config(requires_safety_checker=requires_safety_checker)
self.separate_list = [0,0]
@torch.no_grad()
def __call__(
self,
input_image: Union[Image.Image, torch.Tensor],
denoising_steps: Optional[int] = None,
ensemble_size: int = 5,
processing_res: Optional[int] = None,
match_input_res: bool = True,
resample_method: str = "bilinear",
batch_size: int = 0,
generator: Union[torch.Generator, None] = None,
color_map: str = "Spectral",
show_progress_bar: bool = True,
ensemble_kwargs: Dict = None,
) -> MarigoldDepthOutput:
"""
Function invoked when calling the pipeline.
Args:
input_image (`Image`):
Input RGB (or gray-scale) image.
denoising_steps (`int`, *optional*, defaults to `None`):
Number of denoising diffusion steps during inference. The default value `None` results in automatic
selection. The number of steps should be at least 10 with the full Marigold models, and between 1 and 4
for Marigold-LCM models.
ensemble_size (`int`, *optional*, defaults to `10`):
Number of predictions to be ensembled.
processing_res (`int`, *optional*, defaults to `None`):
Effective processing resolution. When set to `0`, processes at the original image resolution. This
produces crisper predictions, but may also lead to the overall loss of global context. The default
value `None` resolves to the optimal value from the model config.
match_input_res (`bool`, *optional*, defaults to `True`):
Resize depth prediction to match input resolution.
Only valid if `processing_res` > 0.
resample_method: (`str`, *optional*, defaults to `bilinear`):
Resampling method used to resize images and depth predictions. This can be one of `bilinear`, `bicubic` or `nearest`, defaults to: `bilinear`.
batch_size (`int`, *optional*, defaults to `0`):
Inference batch size, no bigger than `num_ensemble`.
If set to 0, the script will automatically decide the proper batch size.
generator (`torch.Generator`, *optional*, defaults to `None`)
Random generator for initial noise generation.
show_progress_bar (`bool`, *optional*, defaults to `True`):
Display a progress bar of diffusion denoising.
color_map (`str`, *optional*, defaults to `"Spectral"`, pass `None` to skip colorized depth map generation):
Colormap used to colorize the depth map.
scale_invariant (`str`, *optional*, defaults to `True`):
Flag of scale-invariant prediction, if True, scale will be adjusted from the raw prediction.
shift_invariant (`str`, *optional*, defaults to `True`):
Flag of shift-invariant prediction, if True, shift will be adjusted from the raw prediction, if False, near plane will be fixed at 0m.
ensemble_kwargs (`dict`, *optional*, defaults to `None`):
Arguments for detailed ensembling settings.
Returns:
`MarigoldDepthOutput`: Output class for Marigold monocular depth prediction pipeline, including:
- **depth_np** (`np.ndarray`) Predicted depth map, with depth values in the range of [0, 1]
- **depth_colored** (`PIL.Image.Image`) Colorized depth map, with the shape of [3, H, W] and values in [0, 1], None if `color_map` is `None`
- **uncertainty** (`None` or `np.ndarray`) Uncalibrated uncertainty(MAD, median absolute deviation)
coming from ensembling. None if `ensemble_size = 1`
"""
# Model-specific optimal default values leading to fast and reasonable results.
if denoising_steps is None:
denoising_steps = self.default_denoising_steps
if processing_res is None:
processing_res = self.default_processing_resolution
assert processing_res >= 0
assert ensemble_size >= 1
# Check if denoising step is reasonable
self._check_inference_step(denoising_steps)
resample_method: InterpolationMode = get_tv_resample_method(resample_method)
# ----------------- Image Preprocess -----------------
# Convert to torch tensor
if isinstance(input_image, Image.Image):
input_image = input_image.convert("RGB")
# convert to torch tensor [H, W, rgb] -> [rgb, H, W]
rgb = pil_to_tensor(input_image)
rgb = rgb.unsqueeze(0) # [1, rgb, H, W]
elif isinstance(input_image, torch.Tensor):
rgb = input_image
else:
raise TypeError(f"Unknown input type: {type(input_image) = }")
input_size = rgb.shape
assert (
4 == rgb.dim() and 3 == input_size[-3]
), f"Wrong input shape {input_size}, expected [1, rgb, H, W]"
# Resize image
if processing_res > 0:
rgb = resize_max_res(
rgb,
max_edge_resolution=processing_res,
resample_method=resample_method,
)
# Normalize rgb values
rgb_norm: torch.Tensor = rgb / 255.0 * 2.0 - 1.0 # [0, 255] -> [-1, 1]
rgb_norm = rgb_norm.to(self.dtype)
assert rgb_norm.min() >= -1.0 and rgb_norm.max() <= 1.0
# ----------------- Predicting depth -----------------
# Batch repeated input image
duplicated_rgb = rgb_norm.expand(ensemble_size, -1, -1, -1)
single_rgb_dataset = TensorDataset(duplicated_rgb)
if batch_size > 0:
_bs = batch_size
else:
_bs = find_batch_size(
ensemble_size=ensemble_size,
input_res=max(rgb_norm.shape[1:]),
dtype=self.dtype,
)
single_rgb_loader = DataLoader(
single_rgb_dataset, batch_size=_bs, shuffle=False
)
# Predict depth maps (batched)
depth_pred_ls = []
if show_progress_bar:
iterable = tqdm(
single_rgb_loader, desc=" " * 2 + "Inference batches", leave=False
)
else:
iterable = single_rgb_loader
for batch in iterable:
(batched_img,) = batch
depth_pred_raw = self.single_infer(
rgb_in=batched_img,
num_inference_steps=denoising_steps,
show_pbar=show_progress_bar,
generator=generator,
)
depth_pred_ls.append(depth_pred_raw.detach())
depth_preds = torch.concat(depth_pred_ls, dim=0)
torch.cuda.empty_cache() # clear vram cache for ensembling
# ----------------- Test-time ensembling -----------------
if ensemble_size > 1:
depth_pred, pred_uncert = ensemble_depth(
depth_preds,
scale_invariant=self.scale_invariant,
shift_invariant=self.shift_invariant,
max_res=50,
**(ensemble_kwargs or {}),
)
else:
depth_pred = depth_preds
pred_uncert = None
# Resize back to original resolution
if match_input_res:
depth_pred = resize(
depth_pred,
input_size[-2:],
interpolation=resample_method,
antialias=True,
)
# Convert to numpy
depth_pred = depth_pred.squeeze()
depth_pred = depth_pred.cpu().numpy()
if pred_uncert is not None:
pred_uncert = pred_uncert.squeeze().cpu().numpy()
# Clip output range
depth_pred = depth_pred.clip(0, 1)
# Colorize
if color_map is not None:
depth_colored = colorize_depth_maps(
depth_pred, 0, 1, cmap=color_map
).squeeze() # [3, H, W], value in (0, 1)
depth_colored = (depth_colored * 255).astype(np.uint8)
depth_colored_hwc = chw2hwc(depth_colored)
depth_colored_img = Image.fromarray(depth_colored_hwc)
else:
depth_colored_img = None
return MarigoldDepthOutput(
depth_np=depth_pred,
depth_colored=depth_colored_img,
uncertainty=pred_uncert,
)
def _replace_unet_conv_in(self):
# replace the first layer to accept 8 in_channels
_weight = self.unet.conv_in.weight.clone() # [320, 4, 3, 3]
_bias = self.unet.conv_in.bias.clone() # [320]
zero_weight = torch.zeros(_weight.shape).to(_weight.device)
_weight = torch.cat([_weight, zero_weight], dim=1)
# _weight = _weight.repeat((1, 2, 1, 1)) # Keep selected channel(s)
# half the activation magnitude
# _weight *= 0.5
# new conv_in channel
_n_convin_out_channel = self.unet.conv_in.out_channels
_new_conv_in = Conv2d(
8, _n_convin_out_channel, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
)
_new_conv_in.weight = Parameter(_weight)
_new_conv_in.bias = Parameter(_bias)
self.unet.conv_in = _new_conv_in
logging.info("Unet conv_in layer is replaced")
# replace config
self.unet.config["in_channels"] = 8
logging.info("Unet config is updated")
return
def _replace_unet_conv_out(self):
# replace the first layer to accept 8 in_channels
_weight = self.unet.conv_out.weight.clone() # [8, 320, 3, 3]
_bias = self.unet.conv_out.bias.clone() # [320]
_weight = _weight.repeat((2, 1, 1, 1)) # Keep selected channel(s)
_bias = _bias.repeat((2))
# half the activation magnitude
# new conv_in channel
_n_convin_out_channel = self.unet.conv_out.out_channels
_new_conv_out = Conv2d(
_n_convin_out_channel, 8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
)
_new_conv_out.weight = Parameter(_weight)
_new_conv_out.bias = Parameter(_bias)
self.unet.conv_out = _new_conv_out
logging.info("Unet conv_out layer is replaced")
# replace config
self.unet.config["out_channels"] = 8
logging.info("Unet config is updated")
return
def _check_inference_step(self, n_step: int) -> None:
"""
Check if denoising step is reasonable
Args:
n_step (`int`): denoising steps
"""
assert n_step >= 1
if isinstance(self.scheduler, DDIMScheduler):
if n_step < 10:
logging.warning(
f"Too few denoising steps: {n_step}. Recommended to use the LCM checkpoint for few-step inference."
)
elif isinstance(self.scheduler, LCMScheduler):
if not 1 <= n_step <= 4:
logging.warning(
f"Non-optimal setting of denoising steps: {n_step}. Recommended setting is 1-4 steps."
)
elif isinstance(self.scheduler, PNDMScheduler):
if n_step < 10:
logging.warning(
f"Too few denoising steps: {n_step}. Recommended to use the LCM checkpoint for few-step inference."
)
else:
raise RuntimeError(f"Unsupported scheduler type: {type(self.scheduler)}")
def encode_empty_text(self):
"""
Encode text embedding for empty prompt
"""
prompt = ""
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids.to(self.text_encoder.device)
self.empty_text_embed = self.text_encoder(text_input_ids)[0].to(self.dtype)
def encode_text(self, prompt):
"""
Encode text embedding for empty prompt
"""
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids.to(self.text_encoder.device)
text_embed = self.text_encoder(text_input_ids)[0].to(self.dtype)
return text_embed
def numpy_to_pil(self, images: np.ndarray) -> PIL.Image.Image:
"""
Convert a numpy image or a batch of images to a PIL image.
"""
if images.ndim == 3:
images = images[None, ...]
images = (images * 255).round().astype("uint8")
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
else:
pil_images = [Image.fromarray(image) for image in images]
return pil_images
def full_depth_rgb_inpaint(self,
rgb_in,
depth_in,
image_mask,
text_embed,
timesteps,
generator,
guidance_scale,
):
depth_latent = self.encode_depth(depth_in)
depth_mask = torch.zeros_like(image_mask)
depth_mask_latent = self.encode_depth(depth_in)
rgb_latent = torch.randn(
depth_latent.shape,
device=self.device,
dtype=self.unet.dtype,
generator=generator,
) * self.rgb_scheduler.init_noise_sigma
rgb_mask = image_mask
rgb_mask_latent = self.encode_rgb(rgb_in * (image_mask.squeeze() < 0.5), generator=generator)
rgb_mask = torch.nn.functional.interpolate(rgb_mask, size=rgb_latent.shape[-2:])
depth_mask = torch.nn.functional.interpolate(depth_mask, size=rgb_latent.shape[-2:])
for i, t in enumerate(timesteps):
cat_latent = torch.cat(
[rgb_latent, rgb_mask, rgb_mask_latent, depth_mask_latent, depth_latent, depth_mask, rgb_mask_latent,
depth_mask_latent], dim=1
).float() # [B, 9*2, h, w]
latent_model_input = torch.cat([cat_latent] * 2)
# predict the noise residual
with torch.no_grad():
partial_noise_pred = self.unet(
latent_model_input,
rgb_timestep=t,
depth_timestep=t,
encoder_hidden_states=text_embed,
return_dict=False,
depth2rgb_scale=0.2
)[0]
noise_pred = self.unet(
latent_model_input,
rgb_timestep=t,
depth_timestep=t,
encoder_hidden_states=text_embed,
return_dict=False,
# separate_list=self.separate_list
)[0]
# perform guidance
rgb_pred_wo_depth_text = partial_noise_pred[0, :4, :, :]
rgb_pred_wo_text = noise_pred[0, :4, :, :]
rgb_pred = noise_pred[1, :4, :, :]
noise_pred = rgb_pred_wo_depth_text + 2 * (rgb_pred_wo_text - rgb_pred_wo_depth_text) + 3 * (rgb_pred - rgb_pred_wo_text)
# compute the previous noisy sample x_t -> x_t-1
rgb_latent = self.rgb_scheduler.step(noise_pred, t, rgb_latent).prev_sample
return rgb_latent, depth_latent
def full_rgb_depth_inpaint(self,
rgb_in,
depth_in,
image_mask,
text_embed,
timesteps,
generator,
guidance_scale
):
rgb_latent = self.encode_rgb(rgb_in)
rgb_mask = torch.zeros_like(image_mask)
rgb_mask_latent = self.encode_rgb(rgb_in)
depth_latent = torch.randn(
rgb_latent.shape,
device=self.device,
dtype=self.unet.dtype,
generator=generator,
) * self.depth_scheduler.init_noise_sigma
depth_mask = image_mask
depth_mask_latent = self.encode_depth(depth_in * (image_mask.squeeze() < 0.5))
rgb_mask = torch.nn.functional.interpolate(rgb_mask, size=rgb_latent.shape[-2:])
depth_mask = torch.nn.functional.interpolate(depth_mask, size=rgb_latent.shape[-2:])
for i, t in enumerate(timesteps):
cat_latent = torch.cat(
[rgb_latent, rgb_mask, rgb_mask_latent, depth_mask_latent, depth_latent, depth_mask, rgb_mask_latent,
depth_mask_latent], dim=1
).float() # [B, 9*2, h, w]
latent_model_input = torch.cat([cat_latent] * 2)
# predict the noise residual
with torch.no_grad():
partial_noise_pred = self.unet(
latent_model_input,
rgb_timestep=t,
depth_timestep=t,
encoder_hidden_states=text_embed,
return_dict=False,
rgb2depth_scale=0.2
)[0]
noise_pred = self.unet(
latent_model_input,
rgb_timestep=t,
depth_timestep=t,
encoder_hidden_states=text_embed,
return_dict=False,
# separate_list=self.separate_list
)[0]
# compute the previous noisy sample x_t -> x_t-1
depth_pre_wo_rgb = partial_noise_pred[1, 4:, :, :]
depth_pre = depth_pre_wo_rgb + 4 * (noise_pred[1, 4:, :, :] - depth_pre_wo_rgb)
depth_latent = self.depth_scheduler.step(depth_pre, t, depth_latent, generator=generator).prev_sample
return rgb_latent, depth_latent
def joint_inpaint(self,
rgb_in,
depth_in,
image_mask,
text_embed,
timesteps,
generator,
guidance_scale
):
bs = rgb_in.shape[0]
h, w = int(rgb_in.shape[-2]/8), int(rgb_in.shape[-1]/8)
rgb_latent = torch.randn(
[bs, 4, h, w],
device=self.device,
dtype=self.unet.dtype,
generator=generator,
) * self.rgb_scheduler.init_noise_sigma
rgb_mask = image_mask
rgb_mask_latent = self.encode_rgb(rgb_in * (rgb_mask.squeeze() < 0.5), generator=generator)
depth_latent = torch.randn(
[bs, 4, h, w],
device=self.device,
dtype=self.unet.dtype,
generator=generator,
) * self.depth_scheduler.init_noise_sigma
depth_mask = image_mask
depth_mask_latent = self.encode_depth(depth_in * (image_mask.squeeze() < 0.5))
rgb_mask = torch.nn.functional.interpolate(rgb_mask, size=rgb_latent.shape[-2:])
depth_mask = torch.nn.functional.interpolate(depth_mask, size=rgb_latent.shape[-2:])
for i, t in enumerate(timesteps):
cat_latent = torch.cat(
[rgb_latent, rgb_mask, rgb_mask_latent, depth_mask_latent, depth_latent, depth_mask, rgb_mask_latent, depth_mask_latent], dim=1
).float() # [B, 9*2, h, w]
latent_model_input = torch.cat([cat_latent] * 2)
# predict the noise residual
with torch.no_grad():
partial_noise_pred = self.unet(
latent_model_input,
rgb_timestep=t,
depth_timestep=t,
encoder_hidden_states=text_embed,
return_dict=False,
depth2rgb_scale=0,
rgb2depth_scale=0.2
)[0]
noise_pred = self.unet(
latent_model_input,
rgb_timestep=t,
depth_timestep=t,
encoder_hidden_states=text_embed,
return_dict=False,
)[0]
# perform guidance
noise_pred_untext_undual, noise_pred_undual = partial_noise_pred.chunk(2)
noise_pred_untext, noise_pred_cond = noise_pred.chunk(2)
# noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
depth_noise_pred = noise_pred_undual + 3 * (noise_pred_cond - noise_pred_undual)
rgb_latent = self.rgb_scheduler.step(noise_pred_cond[:, :4, :, :], t, rgb_latent, return_dict=False)[0]
depth_latent = self.depth_scheduler.step(depth_noise_pred[:, 4:, :, :], t, depth_latent, generator=generator, return_dict=False)[0]
return rgb_latent, depth_latent
@torch.no_grad()
def _rgbd_inpaint(self,
input_image: [torch.Tensor, PIL.Image.Image],
depth_image: [torch.Tensor, PIL.Image.Image],
mask: [torch.Tensor, PIL.Image.Image],
prompt: str = '',
guidance_scale: float = 4.5,
generator: Union[torch.Generator, None] = None,
num_inference_steps: int = 50,
resample_method: str = "bilinear",
processing_res: int = 512,
mode: str = 'full_depth_rgb_inpaint'
) -> PIL.Image:
self._check_inference_step(num_inference_steps)
resample_method: InterpolationMode = get_tv_resample_method(resample_method)
# ----------------- encoder prompt -----------------
if isinstance(prompt, list):
bs = len(prompt)
batch_text_embed = []
for p in prompt:
batch_text_embed.append(self.encode_text(p))
batch_text_embed = torch.cat(batch_text_embed, dim=0)
elif isinstance(prompt, str):
bs = 1
batch_text_embed = self.encode_text(prompt).unsqueeze(0)
else:
raise NotImplementedError
if self.empty_text_embed is None:
self.encode_empty_text()
batch_empty_text_embed = self.empty_text_embed.repeat(
(batch_text_embed.shape[0], 1, 1)
).to(self.device) # [B, 2, 1024]
text_embed = torch.cat([batch_empty_text_embed, batch_text_embed], dim=0)
# ----------------- Image Preprocess -----------------
# Convert to torch tensor
if isinstance(input_image, Image.Image):
rgb_in = self.image_processor.preprocess(input_image, height=processing_res,
width=processing_res).to(self.dtype).to(self.device)
elif isinstance(input_image, torch.Tensor):
rgb = input_image.unsqueeze(0)
input_size = rgb.shape
assert (
4 == rgb.dim() and 3 == input_size[-3]
), f"Wrong input shape {input_size}, expected [1, rgb, H, W]"
if processing_res > 0:
rgb = resize(rgb, [processing_res, processing_res], resample_method, antialias=True)
rgb_norm: torch.Tensor = rgb / 255.0 * 2.0 - 1.0 # [0, 255] -> [-1, 1]
rgb_in = rgb_norm.to(self.dtype).to(self.device)
assert rgb_norm.min() >= -1.0 and rgb_norm.max() <= 1.0
if isinstance(depth_image, Image.Image):
depth = pil_to_tensor(depth_image)
depth = depth.unsqueeze(0) # [1, rgb, H, W]
elif isinstance(depth_image, torch.Tensor):
if len(depth_image.shape) == 3:
depth = depth_image.unsqueeze(0)
else:
depth = depth_image
# pdb.set_trace()
depth = depth.repeat(1, 3, 1, 1)
input_size = depth.shape
assert (
4 == depth.dim() and 3 == input_size[-3]
), f"Wrong input shape {input_size}, expected [1, 1, H, W]"
if processing_res > 0:
depth = resize(depth, [processing_res, processing_res], resample_method, antialias=True)
depth_norm: torch.Tensor = (depth - depth.min()) / (
depth.max() - depth.min()) * 2.0 - 1.0 # [0, 255] -> [-1, 1]
depth_in = depth_norm.to(self.dtype).to(self.device)
assert depth_norm.min() >= -1.0 and depth_norm.max() <= 1.0
if (mask.max() - mask.min()) != 0:
mask = (mask - mask.min()) / (mask.max() - mask.min()) * 255
image_mask = self.mask_processor.preprocess(mask, height=processing_res, width=processing_res).to(self.device)
self.rgb_scheduler.set_timesteps(num_inference_steps, device=self.device)
self.depth_scheduler.set_timesteps(num_inference_steps, device=self.device)
timesteps = self.rgb_scheduler.timesteps
if mode == 'full_rgb_depth_inpaint':
rgb_latent, depth_latent = self.full_rgb_depth_inpaint(rgb_in, depth_in, image_mask, text_embed, timesteps,
generator, guidance_scale=guidance_scale)
if mode == 'partial_depth_rgb_inpaint':
rgb_latent, depth_latent = self.partial_depth_rgb_inpaint(rgb_in, depth_in, image_mask, text_embed, timesteps,
generator, guidance_scale=guidance_scale)
if mode == 'full_depth_rgb_inpaint':
rgb_latent, depth_latent = self.full_depth_rgb_inpaint(rgb_in, depth_in, image_mask, text_embed, timesteps,
generator, guidance_scale=guidance_scale)
if mode == 'joint_inpaint':
rgb_latent, depth_latent = self.joint_inpaint(rgb_in, depth_in, image_mask, text_embed, timesteps,
generator, guidance_scale=guidance_scale)
image = self.decode_image(rgb_latent)
image = self.numpy_to_pil(image)[0]
d_image = self.decode_depth(depth_latent)
d_image = d_image.cpu().permute(0, 2, 3, 1).numpy()
d_image = (d_image - d_image.min()) / (d_image.max() - d_image.min())
d_image = self.numpy_to_pil(d_image)[0]
depth = depth.squeeze().permute(1, 2, 0).cpu().numpy()
depth = (depth - depth.min()) / (depth.max() - depth.min())
ori_depth = self.numpy_to_pil(depth)[0]
ori_image = input_image.squeeze().permute(1, 2, 0).cpu().numpy()
ori_image = self.numpy_to_pil(ori_image/255)[0]
image_mask = self.numpy_to_pil(image_mask.permute(0, 2, 3, 1).cpu().numpy())[0]
cat_image = make_image_grid([ori_image, ori_depth, image_mask, image, d_image], rows=1, cols=5)
return cat_image
def encode_rgb(self, rgb_in: torch.Tensor, generator=None) -> torch.Tensor:
"""
Encode RGB image into latent.
Args:
rgb_in (`torch.Tensor`):
Input RGB image to be encoded.
Returns:
`torch.Tensor`: Image latent.
"""
# encode
image_latents = self.vae.encode(rgb_in).latent_dist.sample(generator=generator)
image_latents = self.vae.config.scaling_factor * image_latents
return image_latents
def encode_depth(self, depth_in: torch.Tensor) -> torch.Tensor:
"""
Encode RGB image into latent.
Args:
rgb_in (`torch.Tensor`):
Input RGB image to be encoded.
Returns:
`torch.Tensor`: Image latent.
"""
# encode
h = self.vae.encoder(depth_in)
moments = self.vae.quant_conv(h)
mean, logvar = torch.chunk(moments, 2, dim=1)
# scale latent
depth_latent = mean * self.depth_latent_scale_factor
return depth_latent
def decode_image(self, latents):
latents = 1 / self.vae.config.scaling_factor * latents
z = self.vae.post_quant_conv(latents)
image = self.vae.decoder(z)
image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
return image
def decode_depth(self, depth_latent: torch.Tensor) -> torch.Tensor:
"""
Decode depth latent into depth map.
Args:
depth_latent (`torch.Tensor`):
Depth latent to be decoded.
Returns:
`torch.Tensor`: Decoded depth map.
"""
# scale latent
depth_latent = depth_latent / self.depth_latent_scale_factor
# decode
z = self.vae.post_quant_conv(depth_latent)
stacked = self.vae.decoder(z)
# mean of output channels
depth_mean = stacked.mean(dim=1, keepdim=True)
return depth_mean
def post_process_rgbd(self, prompts, rgb_image, depth_image):
rgbd_images = []
for idx, p in enumerate(prompts):
image1, image2 = rgb_image[idx], depth_image[idx]
width1, height1 = image1.size
width2, height2 = image2.size
font = ImageFont.load_default(size=20)
text = p
draw = ImageDraw.Draw(image1)
text_bbox = draw.textbbox((0, 0), text, font=font)
text_width = text_bbox[2] - text_bbox[0]
text_height = text_bbox[3] - text_bbox[1]
new_image = Image.new('RGB', (width1 + width2, max(height1, height2) + text_height), (255, 255, 255))
text_x = (new_image.width - text_width) // 2
text_y = 0
draw = ImageDraw.Draw(new_image)
draw.text((text_x, text_y), text, fill="black", font=font)
new_image.paste(image1, (0, text_height))
new_image.paste(image2, (width1, text_height))
rgbd_images.append(pil_to_tensor(new_image))
return rgbd_images
|