|
--- |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: wav2vec2-base-finetuned-iemocap-fin2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-base-finetuned-iemocap-fin2 |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.1912 |
|
- Accuracy: 0.5597 |
|
- F1: 0.5453 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| |
|
| 1.2603 | 1.0 | 102 | 1.2581 | 0.4617 | 0.4105 | |
|
| 1.1338 | 2.0 | 204 | 1.1471 | 0.4801 | 0.4369 | |
|
| 1.0899 | 3.0 | 306 | 1.1386 | 0.4782 | 0.4459 | |
|
| 1.0501 | 4.0 | 408 | 1.0894 | 0.5218 | 0.5096 | |
|
| 0.9892 | 5.0 | 510 | 1.0778 | 0.5422 | 0.5339 | |
|
| 0.8943 | 6.0 | 612 | 1.1394 | 0.5141 | 0.4730 | |
|
| 0.9112 | 7.0 | 714 | 1.0634 | 0.5529 | 0.5379 | |
|
| 0.8688 | 8.0 | 816 | 1.0726 | 0.5664 | 0.5576 | |
|
| 0.8807 | 9.0 | 918 | 1.2264 | 0.5209 | 0.4822 | |
|
| 0.8027 | 10.0 | 1020 | 1.0469 | 0.5839 | 0.5843 | |
|
| 0.7069 | 11.0 | 1122 | 1.1171 | 0.5587 | 0.5398 | |
|
| 0.6508 | 12.0 | 1224 | 1.1889 | 0.5480 | 0.5292 | |
|
| 0.6406 | 13.0 | 1326 | 1.1800 | 0.5664 | 0.5501 | |
|
| 0.6072 | 14.0 | 1428 | 1.1841 | 0.5558 | 0.5413 | |
|
| 0.6277 | 15.0 | 1530 | 1.1912 | 0.5597 | 0.5453 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.14.0 |
|
|