|
[**中文**](./README_ZH.md) | [**English**](./README.md) |
|
|
|
<p align="center" width="100%"> |
|
<a href="https://github.com/daiyizheng/TCMChat" target="_blank"><img src="./logo.png" alt="TCMChat" style="width: 25%; min-width: 300px; display: block; margin: auto;"></a> |
|
</p> |
|
|
|
# TCMChat: A Generative Large Language Model for Traditional Chinese Medicine |
|
|
|
[![Code License](https://img.shields.io/badge/Code%20License-Apache_2.0-green.svg)](https://github.com/SCIR-HI/Huatuo-Llama-Med-Chinese/blob/main/LICENSE) [![Python 3.10.12](https://img.shields.io/badge/python-3.10.12-blue.svg)](https://www.python.org/downloads/release/python-390/) |
|
|
|
## News |
|
|
|
[2024-5-17] Open source model weight on HuggingFace. |
|
|
|
## Application |
|
|
|
### Install |
|
|
|
``` |
|
git clone https://github.com/daiyizheng/TCMChat |
|
cd TCMChat |
|
``` |
|
First install the dependency package. python environment 3.10+ is recommended. |
|
|
|
``` |
|
pip install -r requirements.txt |
|
``` |
|
|
|
### Weights download |
|
|
|
- [TCMChat](https://huggingface.co/daiyizheng/TCMChat): QA and recommendation of TCM knowledge based on baichuan2-7B-Chat. |
|
|
|
### Inference |
|
|
|
#### Command line |
|
|
|
``` |
|
python cli_infer.py \ |
|
--model_name_or_path /your/model/path \ |
|
--model_type chat |
|
``` |
|
|
|
#### Web demo |
|
|
|
``` |
|
python gradio_demo.py |
|
``` |
|
|
|
We provide an online tool:[https://xomics.com.cn/tcmchat](https://xomics.com.cn/tcmchat) |
|
|
|
|
|
### Retrain |
|
|
|
#### Dataset Download |
|
|
|
- [Pretrain dataset](https://github.com/ZJUFanLab/TCMChat/tree/master/data/pretrain) |
|
- [SFT dataset](https://github.com/ZJUFanLab/TCMChat/tree/master/data/sft) |
|
- [Benchmark dataset](https://github.com/ZJUFanLab/TCMChat/tree/master/data/evaluate) |
|
|
|
> Note: Currently only sample data is provided. In the near future, we will fully open source the original data. |
|
|
|
|
|
#### Pre-training |
|
|
|
```shell |
|
train_type="pretrain" |
|
train_file="data/pretrain/train" |
|
validation_file="data/pretrain/test" |
|
block_size="1024" |
|
deepspeed_dir="data/resources/deepspeed_zero_stage2_config.yml" |
|
num_train_epochs="2" |
|
export WANDB_PROJECT="TCM-${train_type}" |
|
date_time=$(date +"%Y%m%d%H%M%S") |
|
run_name="${date_time}_${block_size}" |
|
model_name_or_path="your/path/Baichuan2-7B-Chat" |
|
output_dir="output/${train_type}/${date_time}_${block_size}" |
|
|
|
|
|
accelerate launch --config_file ${deepspeed_dir} src/pretraining.py \ |
|
--model_name_or_path ${model_name_or_path} \ |
|
--train_file ${train_file} \ |
|
--validation_file ${validation_file} \ |
|
--preprocessing_num_workers 20 \ |
|
--cache_dir ./cache \ |
|
--block_size ${block_size} \ |
|
--seed 42 \ |
|
--do_train \ |
|
--do_eval \ |
|
--per_device_train_batch_size 32 \ |
|
--per_device_eval_batch_size 32 \ |
|
--num_train_epochs ${num_train_epochs} \ |
|
--low_cpu_mem_usage True \ |
|
--torch_dtype bfloat16 \ |
|
--bf16 \ |
|
--ddp_find_unused_parameters False \ |
|
--gradient_checkpointing True \ |
|
--learning_rate 2e-4 \ |
|
--warmup_ratio 0.05 \ |
|
--weight_decay 0.01 \ |
|
--report_to wandb \ |
|
--run_name ${run_name} \ |
|
--logging_dir logs \ |
|
--logging_strategy steps \ |
|
--logging_steps 10 \ |
|
--eval_steps 50 \ |
|
--evaluation_strategy steps \ |
|
--save_steps 100 \ |
|
--save_strategy steps \ |
|
--save_total_limit 13 \ |
|
--output_dir ${output_dir} \ |
|
--overwrite_output_dir |
|
``` |
|
|
|
#### Fine-tuning |
|
|
|
```shell |
|
train_type="SFT" |
|
model_max_length="1024" |
|
date_time=$(date +"%Y%m%d%H%M%S") |
|
data_path="data/sft/sample_train_baichuan_data.json" |
|
model_name_or_path="your/path/pretrain" |
|
deepspeed_dir="data/resources/deepspeed_zero_stage2_confi_baichuan2.json" |
|
export WANDB_PROJECT="TCM-${train_type}" |
|
run_name="${train_type}_${date_time}" |
|
output_dir="output/${train_type}/${date_time}_${model_max_length}" |
|
|
|
|
|
deepspeed --hostfile="" src/fine-tune.py \ |
|
--report_to "wandb" \ |
|
--run_name ${run_name} \ |
|
--data_path ${data_path} \ |
|
--model_name_or_path ${model_name_or_path} \ |
|
--output_dir ${output_dir} \ |
|
--model_max_length ${model_max_length} \ |
|
--num_train_epochs 4 \ |
|
--per_device_train_batch_size 16 \ |
|
--gradient_accumulation_steps 1 \ |
|
--save_strategy epoch \ |
|
--learning_rate 2e-5 \ |
|
--lr_scheduler_type constant \ |
|
--adam_beta1 0.9 \ |
|
--adam_beta2 0.98 \ |
|
--adam_epsilon 1e-8 \ |
|
--max_grad_norm 1.0 \ |
|
--weight_decay 1e-4 \ |
|
--warmup_ratio 0.0 \ |
|
--logging_steps 1 \ |
|
--gradient_checkpointing True \ |
|
--deepspeed ${deepspeed_dir} \ |
|
--bf16 True \ |
|
--tf32 True |
|
``` |
|
|
|
### Training details |
|
|
|
Please refer to the experimental section of the paper for instructions. |
|
|
|
|
|
|
|
|
|
|