metadata
base_model: PekingU/rtdetr_r101vd_coco_o365
datasets: keremberke/satellite-building-segmentation
library_name: transformers
license: mit
metrics:
- Average Precision (AP)
- Average Recall (AR)
pipeline_tag: object-detection
tags:
- remote sensing
- object detection
widget:
- src: img.png
output:
url: img.png
model-index:
- name: rt-detr-finetuned-for-satellite-image-roofs-detection
results:
- task:
type: object-detection
dataset:
name: keremberke/satellite-building-segmentation
type: image-segmentation
metrics:
- type: AP (IoU=0.50:0.95)
value: 0.434
name: AP @ IoU=0.50:0.95 | area=all | maxDets=100
- type: AP (IoU=0.50)
value: 0.652
name: AP @ IoU=0.50 | area=all | maxDets=100
- type: AP (IoU=0.75)
value: 0.464
name: AP @ IoU=0.75 | area=all | maxDets=100
- type: AP (IoU=0.50:0.95) small objects
value: 0.248
name: AP @ IoU=0.50:0.95 | area=small | maxDets=100
- type: AP (IoU=0.50:0.95) medium objects
value: 0.51
name: AP @ IoU=0.50:0.95 | area=medium | maxDets=100
- type: AP (IoU=0.50:0.95) large objects
value: 0.632
name: AP @ IoU=0.50:0.95 | area=large | maxDets=100
- type: AR (IoU=0.50:0.95) maxDets=1
value: 0.056
name: AR @ IoU=0.50:0.95 | area=all | maxDets=1
- type: AR (IoU=0.50:0.95) maxDets=10
value: 0.328
name: AR @ IoU=0.50:0.95 | area=all | maxDets=10
- type: AR (IoU=0.50:0.95) maxDets=100
value: 0.519
name: AR @ IoU=0.50:0.95 | area=all | maxDets=100
- type: AR (IoU=0.50:0.95) small objects
value: 0.337
name: AR @ IoU=0.50:0.95 | area=small | maxDets=100
- type: AR (IoU=0.50:0.95) medium objects
value: 0.601
name: AR @ IoU=0.50:0.95 | area=medium | maxDets=100
- type: AR (IoU=0.50:0.95) large objects
value: 0.714
name: AR @ IoU=0.50:0.95 | area=large | maxDets=100
Model Card
Roof Detection for Remote Sensing task.
Model Details
Model Description
- Model type: Object Detection for Remote Sensing task.
- License: MIT
Model Sources
- GitHub: Jupyter Notebook
- Demo: Hugging Face Space
Limitations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.
How to Get Started with the Model
Use the code below to get started with the model.
from transformers import AutoModelForObjectDetection, AutoImageProcessor
import torch
import cv2
image_path=YOUR_IMAGE_PATH
image = cv2.imread(image_path)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = AutoModelForObjectDetection.from_pretrained("Yifeng-Liu/rt-detr-finetuned-for-satellite-image-roofs-detection")
image_processor = AutoImageProcessor.from_pretrained("Yifeng-Liu/rt-detr-finetuned-for-satellite-image-roofs-detection")
CONFIDENCE_TRESHOLD = 0.5
with torch.no_grad():
model.to(device)
# load image and predict
inputs = image_processor(images=image, return_tensors='pt').to(device)
outputs = model(**inputs)
# post-process
target_sizes = torch.tensor([image.shape[:2]]).to(device)
results = image_processor.post_process_object_detection(
outputs=outputs,
threshold=CONFIDENCE_TRESHOLD,
target_sizes=target_sizes
)[0]