Edit model card

SDXL LoRA DreamBooth - Yangdf/mini-mecha-sdxl-lora

Prompt
A dynamic scene of two mecha battle in the air, one is flying and shooting blue energy beam to another which standing on building roof, unreal engine 5 with epic cinematography, in an industrial snow covered planet with green grass
Prompt
A dynamic scene of two mecha battle in the air, one is flying and shooting blue energy beam to another which standing on building roof, unreal engine 5 with epic cinematography, in an industrial snow covered planet with green grass
Prompt
A dynamic scene of two mecha battle in the air, one is flying and shooting blue energy beam to another which standing on building roof, unreal engine 5 with epic cinematography, in an industrial snow covered planet with green grass
Prompt
A dynamic scene of two mecha battle in the air, one is flying and shooting blue energy beam to another which standing on building roof, unreal engine 5 with epic cinematography, in an industrial snow covered planet with green grass

Model description

These are Yangdf/mini-mecha-sdxl-lora LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.

Download model

Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke

Use it with the 🧨 diffusers library

from diffusers import AutoPipelineForText2Image
import torch
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
        
pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('Yangdf/mini-mecha-sdxl-lora', weight_name='pytorch_lora_weights.safetensors')
embedding_path = hf_hub_download(repo_id='Yangdf/mini-mecha-sdxl-lora', filename='mini-mecha-sdxl-lora_emb.safetensors', repo_type="model")
state_dict = load_file(embedding_path)
pipeline.load_textual_inversion(state_dict["clip_l"], token=[], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer)
pipeline.load_textual_inversion(state_dict["clip_g"], token=[], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2)
        
image = pipeline('A dynamic scene of two mecha battle in the air, one is flying and shooting blue energy beam to another which standing on building roof, unreal engine 5 with epic cinematography, in an industrial snow covered planet with green grass').images[0]

For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers

Trigger words

To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens:

to trigger concept TOK → use <s0><s1> in your prompt

Details

All Files & versions.

The weights were trained using 🧨 diffusers Advanced Dreambooth Training Script.

LoRA for the text encoder was enabled. False.

Pivotal tuning was enabled: True.

Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.

Downloads last month
33
Inference API
Examples

Model tree for Yangdf/mini-mecha-sdxl-lora

Adapter
(4785)
this model

Space using Yangdf/mini-mecha-sdxl-lora 1