Edit model card

SentenceTransformer based on Snowflake/snowflake-arctic-embed-m

This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-m. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Snowflake/snowflake-arctic-embed-m
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("XicoC/midterm-finetuned-arctic")
# Run inference
sentences = [
    'What are the key components involved in ensuring data quality and ethical considerations in AI systems?',
    'Data quality; Model architecture (e.g., convolutional neural network, transformers, etc.); Optimizatio n objectives; Training algorithms; RLHF \napproaches; Fine -tuning or retrieval- augmented generation approaches; \nEvaluation data; Ethical considerations; Legal and regulatory requirements.  Information Integrity ; Harmful Bias \nand Homogenization  \nAI Actor Tasks:  AI Deployment, AI Impact Assessment, Domain Experts, End -Users, Operation and Monitoring, TEVV  \n \nMEASURE 2.10:  Privacy risk of the AI system – as identified in the MAP function – is examined and documented.  \nAction ID  Suggested Action  GAI Risks  \nMS-2.10- 001 Conduct AI red -teaming to assess issues  such as: Outputting of training data',
    '30 MEASURE 2.2:  Evaluations involving human subjects meet applicable requirements (including human subject protection) and are \nrepresentative of the relevant population.  \nAction ID  Suggested Action  GAI Risks  \nMS-2.2-001 Assess and manage statistical biases related to GAI content provenance through \ntechniques such as re -sampling, re -weighting, or adversarial training.  Information Integrity ; Information \nSecurity ; Harmful Bias and \nHomogenization  \nMS-2.2-002 Document how content provenance data  is tracked  and how that data interact s \nwith  privacy and security . Consider : Anonymiz ing data to protect the privacy of \nhuman subjects; Leverag ing privacy output filters; Remov ing any personally',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.8
cosine_accuracy@3 0.99
cosine_accuracy@5 0.99
cosine_accuracy@10 1.0
cosine_precision@1 0.8
cosine_precision@3 0.33
cosine_precision@5 0.198
cosine_precision@10 0.1
cosine_recall@1 0.8
cosine_recall@3 0.99
cosine_recall@5 0.99
cosine_recall@10 1.0
cosine_ndcg@10 0.9195
cosine_mrr@10 0.8917
cosine_map@100 0.8917
dot_accuracy@1 0.8
dot_accuracy@3 0.99
dot_accuracy@5 0.99
dot_accuracy@10 1.0
dot_precision@1 0.8
dot_precision@3 0.33
dot_precision@5 0.198
dot_precision@10 0.1
dot_recall@1 0.8
dot_recall@3 0.99
dot_recall@5 0.99
dot_recall@10 1.0
dot_ndcg@10 0.9195
dot_mrr@10 0.8917
dot_map@100 0.8917

Training Details

Training Dataset

Unnamed Dataset

  • Size: 600 training samples
  • Columns: sentence_0 and sentence_1
  • Approximate statistics based on the first 600 samples:
    sentence_0 sentence_1
    type string string
    details
    • min: 13 tokens
    • mean: 21.67 tokens
    • max: 34 tokens
    • min: 3 tokens
    • mean: 132.86 tokens
    • max: 512 tokens
  • Samples:
    sentence_0 sentence_1
    What is the title of the NIST publication related to Artificial Intelligence Risk Management? NIST Trustworthy and Responsible AI
    NIST AI 600 -1
    Artificial Intelligence Risk Management
    Framework: Generative Artificial
    Intelligence Profile


    This publication is available free of charge from:
    https://doi.org/10.6028/NIST.AI.600 -1
    Where can the NIST AI 600 -1 publication be accessed for free? NIST Trustworthy and Responsible AI
    NIST AI 600 -1
    Artificial Intelligence Risk Management
    Framework: Generative Artificial
    Intelligence Profile


    This publication is available free of charge from:
    https://doi.org/10.6028/NIST.AI.600 -1
    What is the title of the publication released by NIST in July 2024 regarding artificial intelligence? NIST Trustworthy and Responsible AI
    NIST AI 600 -1
    Artificial Intelligence Risk Management
    Framework: Generative Artificial
    Intelligence Profile


    This publication is available free of charge from:
    https://doi.org/10.6028/NIST.AI.600 -1

    July 2024




    U.S. Department of Commerce
    Gina M. Raimondo, Secretary
    National Institute of Standards and Technology
    Laurie E. Locascio, NIST Director and Under Secretary of Commerce for Standards and Technology
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 20
  • per_device_eval_batch_size: 20
  • num_train_epochs: 5
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 20
  • per_device_eval_batch_size: 20
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • eval_use_gather_object: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step cosine_map@100
1.0 30 0.8722
1.6667 50 0.8817
2.0 60 0.8867
3.0 90 0.8867
3.3333 100 0.8917

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.1.0
  • Transformers: 4.44.2
  • PyTorch: 2.4.0+cu121
  • Accelerate: 0.34.2
  • Datasets: 2.19.2
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
2
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for XicoC/midterm-finetuned-arctic

Finetuned
(29)
this model

Evaluation results