Doctor-Chad / README.md
ar08's picture
Update README.md
56d9712 verified
---
license: mit
datasets:
- avaliev/chat_doctor
language:
- en
library_name: transformers
pipeline_tag: text-generation
tags:
- medical
- biology
- conversetional
- qween
- doctor
---
To generate text using the `AutoTokenizer` and `AutoModelForCausalLM` from the Hugging Face Transformers library, you can follow these steps. First, ensure you have the necessary libraries installed:
```bash
pip install transformers torch
```
Then, use the following Python code to load the model and generate text:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("Xennon-BD/Doctor-Chad")
model = AutoModelForCausalLM.from_pretrained("Xennon-BD/Doctor-Chad")
# Define the input prompt
input_text = "Hello, how are you doing today?"
# Encode the input text
input_ids = tokenizer.encode(input_text, return_tensors="pt")
# Generate text
output_ids = model.generate(input_ids, max_length=50, num_return_sequences=1, do_sample=True)
# Decode the generated text
generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
print(generated_text)
```
### Explanation:
1. **Load the Tokenizer and Model**:
```python
tokenizer = AutoTokenizer.from_pretrained("Xennon-BD/Doctor-Chad")
model = AutoModelForCausalLM.from_pretrained("Xennon-BD/Doctor-Chad")
```
This code loads the tokenizer and model from the specified Hugging Face model repository.
2. **Define the Input Prompt**:
```python
input_text = "Hello, how are you doing today?"
```
This is the text prompt that you want the model to complete or generate text from.
3. **Encode the Input Text**:
```python
input_ids = tokenizer.encode(input_text, return_tensors="pt")
```
The `tokenizer.encode` method converts the input text into token IDs that the model can process. The `return_tensors="pt"` argument specifies that the output should be in the form of PyTorch tensors.
4. **Generate Text**:
```python
output_ids = model.generate(input_ids, max_length=50, num_return_sequences=1, do_sample=True)
```
The `model.generate` method generates text based on the input token IDs.
- `max_length=50` specifies the maximum length of the generated text.
- `num_return_sequences=1` specifies the number of generated text sequences to return.
- `do_sample=True` indicates that sampling should be used to generate text, which introduces some randomness and can produce more varied text.
5. **Decode the Generated Text**:
```python
generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
```
The `tokenizer.decode` method converts the generated token IDs back into human-readable text. The `skip_special_tokens=True` argument ensures that special tokens (like `<|endoftext|>`) are not included in the output.
6. **Print the Generated Text**:
```python
print(generated_text)
```
This prints the generated text to the console.
You can modify the input prompt and the parameters of the `model.generate` method to suit your needs, such as adjusting `max_length` for longer or shorter text generation, or changing `num_return_sequences` to generate multiple variations.