|
--- |
|
license: mit |
|
datasets: |
|
- avaliev/chat_doctor |
|
language: |
|
- en |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
tags: |
|
- medical |
|
- biology |
|
- conversetional |
|
- qween |
|
- doctor |
|
--- |
|
To generate text using the `AutoTokenizer` and `AutoModelForCausalLM` from the Hugging Face Transformers library, you can follow these steps. First, ensure you have the necessary libraries installed: |
|
|
|
```bash |
|
pip install transformers torch |
|
``` |
|
|
|
Then, use the following Python code to load the model and generate text: |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
# Load the tokenizer and model |
|
tokenizer = AutoTokenizer.from_pretrained("Xennon-BD/Doctor-Chad") |
|
model = AutoModelForCausalLM.from_pretrained("Xennon-BD/Doctor-Chad") |
|
|
|
# Define the input prompt |
|
input_text = "Hello, how are you doing today?" |
|
|
|
# Encode the input text |
|
input_ids = tokenizer.encode(input_text, return_tensors="pt") |
|
|
|
# Generate text |
|
output_ids = model.generate(input_ids, max_length=50, num_return_sequences=1, do_sample=True) |
|
|
|
# Decode the generated text |
|
generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True) |
|
|
|
print(generated_text) |
|
``` |
|
|
|
### Explanation: |
|
|
|
1. **Load the Tokenizer and Model**: |
|
```python |
|
tokenizer = AutoTokenizer.from_pretrained("Xennon-BD/Doctor-Chad") |
|
model = AutoModelForCausalLM.from_pretrained("Xennon-BD/Doctor-Chad") |
|
``` |
|
This code loads the tokenizer and model from the specified Hugging Face model repository. |
|
|
|
2. **Define the Input Prompt**: |
|
```python |
|
input_text = "Hello, how are you doing today?" |
|
``` |
|
This is the text prompt that you want the model to complete or generate text from. |
|
|
|
3. **Encode the Input Text**: |
|
```python |
|
input_ids = tokenizer.encode(input_text, return_tensors="pt") |
|
``` |
|
The `tokenizer.encode` method converts the input text into token IDs that the model can process. The `return_tensors="pt"` argument specifies that the output should be in the form of PyTorch tensors. |
|
|
|
4. **Generate Text**: |
|
```python |
|
output_ids = model.generate(input_ids, max_length=50, num_return_sequences=1, do_sample=True) |
|
``` |
|
The `model.generate` method generates text based on the input token IDs. |
|
- `max_length=50` specifies the maximum length of the generated text. |
|
- `num_return_sequences=1` specifies the number of generated text sequences to return. |
|
- `do_sample=True` indicates that sampling should be used to generate text, which introduces some randomness and can produce more varied text. |
|
|
|
5. **Decode the Generated Text**: |
|
```python |
|
generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True) |
|
``` |
|
The `tokenizer.decode` method converts the generated token IDs back into human-readable text. The `skip_special_tokens=True` argument ensures that special tokens (like `<|endoftext|>`) are not included in the output. |
|
|
|
6. **Print the Generated Text**: |
|
```python |
|
print(generated_text) |
|
``` |
|
|
|
This prints the generated text to the console. |
|
|
|
You can modify the input prompt and the parameters of the `model.generate` method to suit your needs, such as adjusting `max_length` for longer or shorter text generation, or changing `num_return_sequences` to generate multiple variations. |