|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: jonatasgrosman/wav2vec2-large-xlsr-53-english |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- audiofolder |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: wav2vec2-large-xlsr-53-english-finetuned-babycry-v3 |
|
results: |
|
- task: |
|
name: Audio Classification |
|
type: audio-classification |
|
dataset: |
|
name: audiofolder |
|
type: audiofolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: |
|
accuracy: 0.8152173913043478 |
|
- name: F1 |
|
type: f1 |
|
value: 0.7322311897943244 |
|
- name: Precision |
|
type: precision |
|
value: 0.6645793950850661 |
|
- name: Recall |
|
type: recall |
|
value: 0.8152173913043478 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-large-xlsr-53-english-finetuned-babycry-v3 |
|
|
|
This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-english](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-english) on the audiofolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7337 |
|
- Accuracy: {'accuracy': 0.8152173913043478} |
|
- F1: 0.7322 |
|
- Precision: 0.6646 |
|
- Recall: 0.8152 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.001 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:------:|:----:|:---------------:|:--------------------------------:|:------:|:---------:|:------:| |
|
| 0.949 | 0.5435 | 25 | 0.7351 | {'accuracy': 0.8152173913043478} | 0.7322 | 0.6646 | 0.8152 | |
|
| 0.7488 | 1.0870 | 50 | 0.7795 | {'accuracy': 0.8152173913043478} | 0.7322 | 0.6646 | 0.8152 | |
|
| 0.6911 | 1.6304 | 75 | 0.7066 | {'accuracy': 0.8152173913043478} | 0.7322 | 0.6646 | 0.8152 | |
|
| 0.8113 | 2.1739 | 100 | 0.8012 | {'accuracy': 0.8152173913043478} | 0.7322 | 0.6646 | 0.8152 | |
|
| 0.634 | 2.7174 | 125 | 0.7801 | {'accuracy': 0.8152173913043478} | 0.7322 | 0.6646 | 0.8152 | |
|
| 0.6503 | 3.2609 | 150 | 0.7712 | {'accuracy': 0.8152173913043478} | 0.7322 | 0.6646 | 0.8152 | |
|
| 0.7523 | 3.8043 | 175 | 0.7078 | {'accuracy': 0.8152173913043478} | 0.7322 | 0.6646 | 0.8152 | |
|
| 0.5493 | 4.3478 | 200 | 0.7484 | {'accuracy': 0.8152173913043478} | 0.7322 | 0.6646 | 0.8152 | |
|
| 0.7253 | 4.8913 | 225 | 0.7341 | {'accuracy': 0.8152173913043478} | 0.7322 | 0.6646 | 0.8152 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.1+cu121 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.19.1 |
|
|