Wiam's picture
update model card README.md
77c5114
|
raw
history blame
4.54 kB
metadata
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: wav2vec2-base-finetuned-ravdess
    results: []

wav2vec2-base-finetuned-ravdess

This model is a fine-tuned version of facebook/wav2vec2-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9291
  • Accuracy: 0.7431

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 9 1.8542 0.375
1.8624 2.0 18 1.7931 0.4410
1.8211 3.0 27 1.7181 0.4479
1.7355 4.0 36 1.6184 0.4861
1.6208 5.0 45 1.5383 0.4965
1.4999 6.0 54 1.4630 0.5069
1.4016 7.0 63 1.4161 0.5278
1.3028 8.0 72 1.3513 0.5312
1.2202 9.0 81 1.3359 0.5625
1.1506 10.0 90 1.3518 0.5625
1.1506 11.0 99 1.2043 0.6076
1.0749 12.0 108 1.2926 0.5833
0.993 13.0 117 1.1970 0.6181
0.8961 14.0 126 1.1593 0.6285
0.8062 15.0 135 1.1184 0.6424
0.7547 16.0 144 1.1318 0.6285
0.7192 17.0 153 1.0872 0.6493
0.65 18.0 162 1.0737 0.6528
0.6142 19.0 171 1.0677 0.6597
0.5845 20.0 180 1.0220 0.6806
0.5845 21.0 189 0.9968 0.6840
0.5217 22.0 198 0.9864 0.6840
0.4798 23.0 207 0.9708 0.6840
0.4501 24.0 216 1.0981 0.6632
0.4339 25.0 225 1.0536 0.6806
0.4274 26.0 234 0.9387 0.6979
0.3742 27.0 243 0.9879 0.6979
0.3747 28.0 252 0.9773 0.6979
0.3389 29.0 261 0.9257 0.7361
0.3213 30.0 270 0.9292 0.7049
0.3213 31.0 279 0.9555 0.7153
0.3007 32.0 288 0.9733 0.7083
0.2681 33.0 297 1.0336 0.6979
0.2576 34.0 306 1.0443 0.6875
0.2561 35.0 315 0.9261 0.7292
0.2575 36.0 324 1.0833 0.6771
0.2483 37.0 333 0.9775 0.7083
0.2108 38.0 342 0.8911 0.7326
0.218 39.0 351 1.0301 0.6840
0.1927 40.0 360 0.9935 0.7014
0.1927 41.0 369 0.9619 0.7292
0.1945 42.0 378 1.0197 0.6944
0.1926 43.0 387 0.9291 0.7431
0.1799 44.0 396 1.0348 0.6875
0.1768 45.0 405 0.9899 0.7153
0.1728 46.0 414 1.0284 0.7049
0.1713 47.0 423 1.0527 0.7049
0.1638 48.0 432 1.0001 0.7083
0.159 49.0 441 0.9931 0.7153
0.1637 50.0 450 1.0015 0.7118

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3