beamaia's picture
Upload folder using huggingface_hub
b96e66f verified
metadata
license: mit
library_name: trl
tags:
  - KTO
  - WeniGPT
base_model: mistralai/Mixtral-8x7B-Instruct-v0.1
model-index:
  - name: Weni/WeniGPT-QA-Mixstral-7B-5.0.0-KTO
    results: []
language:
  - pt

Weni/WeniGPT-QA-Mixstral-7B-5.0.0-KTO

This model is a fine-tuned version of [mistralai/Mixtral-8x7B-Instruct-v0.1] on the dataset Weni/WeniGPT-QA-Binarized-1.2.0 with the KTO trainer. It is part of the WeniGPT project for Weni. Description: WeniGPT Experiment using KTO trainer with no collator, Mixstral model and random system prompt.

It achieves the following results on the evaluation set: {'eval_loss': 0.041092585772275925, 'eval_runtime': 962.9422, 'eval_samples_per_second': 0.494, 'eval_steps_per_second': 0.124, 'eval/rewards/chosen': 3.7070999145507812, 'eval/rewards/rejected': -19.991207122802734, 'eval/kl': 0.0, 'eval/logps/chosen': -122.67949676513672, 'eval/logps/rejected': -363.1288146972656, 'eval/rewards/margins': 23.698307037353516, 'epoch': 1.0}

Intended uses & limitations

This model has not been trained to avoid specific intructions.

Training procedure

Finetuning was done on the model mistralai/Mixtral-8x7B-Instruct-v0.1 with the following prompt:

---------------------
Question:
<|system|>
Você é um médico tratando um paciente com amnésia. Para responder as perguntas do paciente, você irá ler um texto anteriormente para se contextualizar. Se você trouxer informações desconhecidas, fora do texto lido, poderá deixar o paciente confuso. Se o paciente fizer uma questão sobre informações não presentes no texto, você precisa responder de forma educada que você não tem informação suficiente para responder, pois se tentar responder, pode trazer informações que não ajudarão o paciente recuperar sua memória. Lembre, se não estiver no texto, você precisa responder de forma educada que você não tem informação suficiente para responder. Precisamos ajudar o paciente.
<|user|>
Contexto: {context}

Questão: {question}</s>
<|assistant|>



---------------------
Response:
{response}</s>


---------------------

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • per_device_train_batch_size: 4
  • per_device_eval_batch_size: 4
  • gradient_accumulation_steps: 8
  • num_gpus: 1
  • total_train_batch_size: 32
  • optimizer: AdamW
  • lr_scheduler_type: cosine
  • num_steps: 131
  • quantization_type: bitsandbytes
  • LoRA: ("\n - bits: 4\n - use_exllama: True\n - device_map: auto\n - use_cache: False\n - lora_r: 16\n - lora_alpha: 32\n - lora_dropout: 0.05\n - bias: none\n - target_modules: ['q_proj', 'k_proj', 'v_proj', 'o_proj']\n - task_type: CAUSAL_LM",)

Training results

Framework versions

Hardware

  • Cloud provided: runpod.io