File size: 2,550 Bytes
5132836 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- PolyAI/minds14
metrics:
- wer
model-index:
- name: whisper-tiny-en-finetune-minds14
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: PolyAI/minds14
type: PolyAI/minds14
config: en-US
split: train[450:]
args: en-US
metrics:
- name: Wer
type: wer
value: 0.3382526564344746
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-tiny-en-finetune-minds14
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6541
- Wer Ortho: 0.3399
- Wer: 0.3383
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 1000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|
| 0.3136 | 3.57 | 100 | 0.4883 | 0.3640 | 0.3524 |
| 0.0417 | 7.14 | 200 | 0.5146 | 0.3560 | 0.3442 |
| 0.0066 | 10.71 | 300 | 0.5736 | 0.3411 | 0.3353 |
| 0.0017 | 14.29 | 400 | 0.6040 | 0.3455 | 0.3418 |
| 0.0013 | 17.86 | 500 | 0.6226 | 0.3393 | 0.3365 |
| 0.0009 | 21.43 | 600 | 0.6352 | 0.3393 | 0.3365 |
| 0.0007 | 25.0 | 700 | 0.6436 | 0.3399 | 0.3371 |
| 0.0006 | 28.57 | 800 | 0.6492 | 0.3399 | 0.3383 |
| 0.0006 | 32.14 | 900 | 0.6530 | 0.3399 | 0.3383 |
| 0.0006 | 35.71 | 1000 | 0.6541 | 0.3399 | 0.3383 |
### Framework versions
- Transformers 4.29.2
- Pytorch 1.13.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|