update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- PolyAI/minds14
|
7 |
+
metrics:
|
8 |
+
- wer
|
9 |
+
model-index:
|
10 |
+
- name: whisper-tiny-en-finetune-minds14
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Automatic Speech Recognition
|
14 |
+
type: automatic-speech-recognition
|
15 |
+
dataset:
|
16 |
+
name: PolyAI/minds14
|
17 |
+
type: PolyAI/minds14
|
18 |
+
config: en-US
|
19 |
+
split: train[450:]
|
20 |
+
args: en-US
|
21 |
+
metrics:
|
22 |
+
- name: Wer
|
23 |
+
type: wer
|
24 |
+
value: 0.3382526564344746
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# whisper-tiny-en-finetune-minds14
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.6541
|
35 |
+
- Wer Ortho: 0.3399
|
36 |
+
- Wer: 0.3383
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 1e-05
|
56 |
+
- train_batch_size: 8
|
57 |
+
- eval_batch_size: 8
|
58 |
+
- seed: 42
|
59 |
+
- distributed_type: multi-GPU
|
60 |
+
- gradient_accumulation_steps: 2
|
61 |
+
- total_train_batch_size: 16
|
62 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
63 |
+
- lr_scheduler_type: linear
|
64 |
+
- lr_scheduler_warmup_steps: 50
|
65 |
+
- training_steps: 1000
|
66 |
+
- mixed_precision_training: Native AMP
|
67 |
+
|
68 |
+
### Training results
|
69 |
+
|
70 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
|
71 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|
|
72 |
+
| 0.3136 | 3.57 | 100 | 0.4883 | 0.3640 | 0.3524 |
|
73 |
+
| 0.0417 | 7.14 | 200 | 0.5146 | 0.3560 | 0.3442 |
|
74 |
+
| 0.0066 | 10.71 | 300 | 0.5736 | 0.3411 | 0.3353 |
|
75 |
+
| 0.0017 | 14.29 | 400 | 0.6040 | 0.3455 | 0.3418 |
|
76 |
+
| 0.0013 | 17.86 | 500 | 0.6226 | 0.3393 | 0.3365 |
|
77 |
+
| 0.0009 | 21.43 | 600 | 0.6352 | 0.3393 | 0.3365 |
|
78 |
+
| 0.0007 | 25.0 | 700 | 0.6436 | 0.3399 | 0.3371 |
|
79 |
+
| 0.0006 | 28.57 | 800 | 0.6492 | 0.3399 | 0.3383 |
|
80 |
+
| 0.0006 | 32.14 | 900 | 0.6530 | 0.3399 | 0.3383 |
|
81 |
+
| 0.0006 | 35.71 | 1000 | 0.6541 | 0.3399 | 0.3383 |
|
82 |
+
|
83 |
+
|
84 |
+
### Framework versions
|
85 |
+
|
86 |
+
- Transformers 4.29.2
|
87 |
+
- Pytorch 1.13.1+cu117
|
88 |
+
- Datasets 2.12.0
|
89 |
+
- Tokenizers 0.13.3
|