metadata
datasets:
- shenxq/OneVision
- shenxq/VideoChat2
base_model:
- Vision-CAIR/LongVU_Qwen2_7B_img
pipeline_tag: video-text-to-text
model-index:
- name: llava-onevision-qwen-7b-ov
results:
- task:
type: multimodal
dataset:
name: EgoSchema
type: egoschema
metrics:
- type: accuracy
value: 67.6
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: MLVU
type: mlvu
metrics:
- type: accuracy
value: 65.4
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: MVBench
type: mvbench
metrics:
- type: accuracy
value: 66.9
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: VideoMME
type: videomme
metrics:
- type: accuracy
value: 60.6
name: accuracy
verified: true
LongVU
This repository contains the model based on Qwen2-7B as presented in LongVU: Spatiotemporal Adaptive Compression for Long Video-Language Understanding.
Play with the model on the HF demo.
Use
We provide the simple generation process for using our model. For more details, you could refer to Github
# git clone https://github.com/Vision-CAIR/LongVU
import numpy as np
import torch
from longvu.builder import load_pretrained_model
from longvu.constants import (
DEFAULT_IMAGE_TOKEN,
IMAGE_TOKEN_INDEX,
)
from longvu.conversation import conv_templates, SeparatorStyle
from longvu.mm_datautils import (
KeywordsStoppingCriteria,
process_images,
tokenizer_image_token,
)
from decord import cpu, VideoReader
tokenizer, model, image_processor, context_len = load_pretrained_model(
"./checkpoints/longvu_qwen", None, "cambrian_qwen",
)
model.eval()
video_path = "./examples/video1.mp4"
qs = "Describe this video in detail"
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
fps = float(vr.get_avg_fps())
frame_indices = np.array([i for i in range(0, len(vr), round(fps),)])
video = []
for frame_index in frame_indices:
img = vr[frame_index].asnumpy()
video.append(img)
video = np.stack(video)
image_sizes = [video[0].shape[:2]]
video = process_images(video, image_processor, model.config)
video = [item.unsqueeze(0) for item in video]
qs = DEFAULT_IMAGE_TOKEN + "\n" + qs
conv = conv_templates["qwen"].copy()
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(model.device)
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
with torch.inference_mode():
output_ids = model.generate(
input_ids,
images=video,
image_sizes=image_sizes,
do_sample=False,
temperature=0.2,
max_new_tokens=128,
use_cache=True,
stopping_criteria=[stopping_criteria],
)
pred = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
@misc{shen2024longvuspatiotemporaladaptivecompression,
title={LongVU: Spatiotemporal Adaptive Compression for Long Video-Language Understanding},
author={Xiaoqian Shen and Yunyang Xiong and Changsheng Zhao and Lemeng Wu and Jun Chen and Chenchen Zhu and Zechun Liu and Fanyi Xiao and Balakrishnan Varadarajan and Florian Bordes and Zhuang Liu and Hu Xu and Hyunwoo J. Kim and Bilge Soran and Raghuraman Krishnamoorthi and Mohamed Elhoseiny and Vikas Chandra},
year={2024},
eprint={2410.17434},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2410.17434},
}