MalayaLLM[മലയാളം/Malayalam]: Gemma-2-2B
Collection
Gemma-2-2B based Malayalam pretrained , finetuned models
•
3 items
•
Updated
Discover the mind behind this model and stay updated on their contributions to the field https://www.linkedin.com/in/vishnu-prasad-j/
The MalayaLLM models have been improved and customized expanding upon the groundwork laid by the original Gemma-2-2B model.
float16
Gemma-7B,9B trained model is here :MalayaLLM:Gemma-7B
Select either pytorch-cuda=11.8
for CUDA 11.8 or pytorch-cuda=12.1
for CUDA 12.1. If you have mamba
, use mamba
instead of conda
for faster solving. See this Github issue for help on debugging Conda installs.
conda create --name unsloth_env \
python=3.10 \
pytorch-cuda=<11.8/12.1> \
pytorch cudatoolkit xformers -c pytorch -c nvidia -c xformers \
-y
conda activate unsloth_env
pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
pip install --no-deps "trl<0.9.0" peft accelerate bitsandbytes
# Installs Unsloth, Xformers (Flash Attention) and all other packages!
#!pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
#!pip install --no-deps xformers "trl<0.9.0" peft accelerate bitsandbytes
import sentencepiece as spm
from unsloth import FastLanguageModel
import torch
max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
model, tokenizer = FastLanguageModel.from_pretrained(
model_name="VishnuPJ/MalayaLLM_Gemma_2_2B_Instruct_V1.0",
max_seq_length=max_seq_length,
dtype=dtype,
load_in_4bit=load_in_4bit,
)
EOS_TOKEN = tokenizer.eos_token # Must add EOS_TOKEN
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
#### Giving Instruction with Input
'''
alpaca_prompt_1 = """ഒരു ചുമതല വിവരിക്കുന്ന ഒരു നിർദ്ദേശം ചുവടെയുണ്ട്.
അഭ്യർത്ഥന ശരിയായി പൂർത്തിയാക്കുന്ന ഒരു പ്രതികരണം എഴുതുക.".
### നിർദ്ദേശം:
{}
### ഇൻപുട്ട്:
{}
### പ്രതികരണം:
{}"""
inputs = tokenizer([
alpaca_prompt_1.format(
# "Continue the fibonnaci sequence.", # instruction
"""താഴെ ഉള്ള വാക്യത്തിൽ "അത്" എന്ന് പറയുന്നത് എന്തിനെ ആണ് ?""", # instruction
""" ഒരു വാഹനം കയറ്റം കയറുക ആയിരുന്നു .അതിൽ 4 ആൾക്കാർ ഉണ്ടായിരുന്നു. """, # input
"", # output - leave this blank for generation!
)
], return_tensors = "pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=128, use_cache=True)
# Printing the result
print(tokenizer.batch_decode(outputs)[0].split("പ്രതികരണം:\n")[-1])
'''
## Giving Instruction only.
alpaca_prompt_2 = """ഒരു ചുമതല വിവരിക്കുന്ന ഒരു നിർദ്ദേശം ചുവടെയുണ്ട്.
അഭ്യർത്ഥന ശരിയായി പൂർത്തിയാക്കുന്ന ഒരു പ്രതികരണം എഴുതുക.".
### നിർദ്ദേശം:
{}
### പ്രതികരണം:
{}"""
while True:
# Taking user input for the instruction
instruction = input("Enter the instruction (or type 'exit' to quit): ")
if instruction.lower() == 'exit':
break
# Preparing the input for the model
inputs = tokenizer([
alpaca_prompt_2.format(
instruction,
"", # output - leave this blank for generation!
)
], return_tensors="pt").to("cuda")
# Generating the output
outputs = model.generate(**inputs, max_new_tokens=128, use_cache=True)
# Printing the result
print(tokenizer.batch_decode(outputs)[0].split("പ്രതികരണം:\n")[-1])
print("Program terminated.")
''''
Enter instruction (or 'exit' to end): ഒരു സമചതുരത്തിന്റെ ഒരു വശം 4 cm ആണെങ്കിൽ , അതിന്റെ area കണ്ടുപിടിക്കുക..
സമചതുരത്തിന്റെ area 16 cm2 ആണ്.<eos>.
Enter instruction (or 'exit' to end): ഇന്ത്യയുടെ അടുത്ത് സ്ഥിതി ചെയുന്ന നാല് രാജ്യങ്ങളുടെ പേര് പറയുക.
"ഇന്ത്യയ്ക്ക് സമീപമുള്ള നാല് രാജ്യങ്ങൾ ഇവയാണ്:
- നേപ്പാൾ
- ഭൂട്ടാൻ
- ടിബറ്റ് (ചൈന)
- പാകിസ്ഥാൻ"<eos>
Enter instruction (or 'exit' to end):exit
llama.cpp
locally, follow the instructions provided in the build documentation.llama.cpp
, you can run it as a web server. Below is an example of how to start the server:llama-server.exe -m gemma_2_9b_instruction.Q4_K_M.gguf -ngl 42 -c 128 -n 100
Thanks to Unsloth, the process of fine-tuning large language models (LLMs) has become much easier and more efficient.