|
--- |
|
library_name: transformers |
|
language: |
|
- ru |
|
- en |
|
--- |
|
|
|
# Релиз вихря 0.3-0.4 |
|
|
|
Долили сильно больше данных в sft, теперь стабильнее работает json и multiturn, слегка подточили параметры претрена модели |
|
|
|
Added a lot more data to sft, now json and multiturn work more stable on long context and hard prompts |
|
|
|
- [Google Colab](https://colab.research.google.com/drive/15O9LwZhVUa1LWhZa2UKr_B-KOKenJBvv#scrollTo=5EeNFU2-9ERi) |
|
- [GGUF](https://huggingface.co/Vikhrmodels/Vikhr-7B-instruct_0.4-GGUF) |
|
|
|
```python |
|
|
|
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
model = AutoModelForCausalLM.from_pretrained("Vikhrmodels/Vikhr-7B-instruct_0.4", |
|
device_map="auto", |
|
attn_implementation="flash_attention_2", |
|
torch_dtype=torch.bfloat16) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("Vikhrmodels/Vikhr-7B-instruct_0.4") |
|
from transformers import AutoTokenizer, pipeline |
|
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) |
|
prompts = [ |
|
"В чем разница между фруктом и овощем?", |
|
"Годы жизни колмагорова?"] |
|
|
|
def test_inference(prompt): |
|
prompt = pipe.tokenizer.apply_chat_template([{"role": "user", "content": prompt}], tokenize=False, add_generation_prompt=True) |
|
print(prompt) |
|
outputs = pipe(prompt, max_new_tokens=512, do_sample=True, num_beams=1, temperature=0.25, top_k=50, top_p=0.98, eos_token_id=79097) |
|
return outputs[0]['generated_text'][len(prompt):].strip() |
|
|
|
|
|
for prompt in prompts: |
|
print(f" prompt:\n{prompt}") |
|
print(f" response:\n{test_inference(prompt)}") |
|
print("-"*50) |
|
|
|
``` |
|
|
|
|
|
``` |
|
@article{nikolich2024vikhr, |
|
title={Vikhr: The Family of Open-Source Instruction-Tuned Large Language Models for Russian}, |
|
author={Aleksandr Nikolich and Konstantin Korolev and Artem Shelmanov}, |
|
journal={arXiv preprint arXiv:2405.13929}, |
|
year={2024}, |
|
url={https://arxiv.org/pdf/2405.13929} |
|
} |
|
``` |