metadata
library_name: transformers
tags: []
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model = AutoModelForCausalLM.from_pretrained("AlexWortega/v5-it",
device_map="auto",
attn_implementation="flash_attention_2",
torch_dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained("AlexWortega/v5-it")
from transformers import AutoTokenizer, pipeline
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
prompts = [
"В чем разница между фруктом и овощем?",
"Годы жизни колмагорова?"]
def test_inference(prompt):
prompt = pipe.tokenizer.apply_chat_template([{"role": "user", "content": prompt}], tokenize=False, add_generation_prompt=True)
print(prompt)
outputs = pipe(prompt, max_new_tokens=512, do_sample=True, num_beams=1, temperature=0.25, top_k=50, top_p=0.98, eos_token_id=79097)
return outputs[0]['generated_text'][len(prompt):].strip()
for prompt in prompts:
print(f" prompt:\n{prompt}")
print(f" response:\n{test_inference(prompt)}")
print("-"*50)