|
|
|
|
|
import argparse |
|
from argparse import Namespace |
|
|
|
import torch |
|
from transformers import ( |
|
CLIPImageProcessor, |
|
CLIPTextConfig, |
|
CLIPTextModel, |
|
CLIPTokenizer, |
|
CLIPVisionConfig, |
|
CLIPVisionModelWithProjection, |
|
GPT2Tokenizer, |
|
) |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
DPMSolverMultistepScheduler, |
|
UniDiffuserModel, |
|
UniDiffuserPipeline, |
|
UniDiffuserTextDecoder, |
|
) |
|
|
|
|
|
SCHEDULER_CONFIG = Namespace( |
|
**{ |
|
"beta_start": 0.00085, |
|
"beta_end": 0.012, |
|
"beta_schedule": "scaled_linear", |
|
"solver_order": 3, |
|
} |
|
) |
|
|
|
|
|
|
|
def shave_segments(path, n_shave_prefix_segments=1): |
|
""" |
|
Removes segments. Positive values shave the first segments, negative shave the last segments. |
|
""" |
|
if n_shave_prefix_segments >= 0: |
|
return ".".join(path.split(".")[n_shave_prefix_segments:]) |
|
else: |
|
return ".".join(path.split(".")[:n_shave_prefix_segments]) |
|
|
|
|
|
|
|
def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0): |
|
""" |
|
Updates paths inside resnets to the new naming scheme (local renaming) |
|
""" |
|
mapping = [] |
|
for old_item in old_list: |
|
new_item = old_item |
|
|
|
new_item = new_item.replace("nin_shortcut", "conv_shortcut") |
|
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) |
|
|
|
mapping.append({"old": old_item, "new": new_item}) |
|
|
|
return mapping |
|
|
|
|
|
|
|
def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0): |
|
""" |
|
Updates paths inside attentions to the new naming scheme (local renaming) |
|
""" |
|
mapping = [] |
|
for old_item in old_list: |
|
new_item = old_item |
|
|
|
new_item = new_item.replace("norm.weight", "group_norm.weight") |
|
new_item = new_item.replace("norm.bias", "group_norm.bias") |
|
|
|
new_item = new_item.replace("q.weight", "to_q.weight") |
|
new_item = new_item.replace("q.bias", "to_q.bias") |
|
|
|
new_item = new_item.replace("k.weight", "to_k.weight") |
|
new_item = new_item.replace("k.bias", "to_k.bias") |
|
|
|
new_item = new_item.replace("v.weight", "to_v.weight") |
|
new_item = new_item.replace("v.bias", "to_v.bias") |
|
|
|
new_item = new_item.replace("proj_out.weight", "to_out.0.weight") |
|
new_item = new_item.replace("proj_out.bias", "to_out.0.bias") |
|
|
|
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) |
|
|
|
mapping.append({"old": old_item, "new": new_item}) |
|
|
|
return mapping |
|
|
|
|
|
|
|
def conv_attn_to_linear(checkpoint): |
|
keys = list(checkpoint.keys()) |
|
attn_keys = ["query.weight", "key.weight", "value.weight"] |
|
for key in keys: |
|
if ".".join(key.split(".")[-2:]) in attn_keys: |
|
if checkpoint[key].ndim > 2: |
|
checkpoint[key] = checkpoint[key][:, :, 0, 0] |
|
elif "proj_attn.weight" in key: |
|
if checkpoint[key].ndim > 2: |
|
checkpoint[key] = checkpoint[key][:, :, 0] |
|
|
|
|
|
|
|
|
|
def assign_to_checkpoint( |
|
paths, |
|
checkpoint, |
|
old_checkpoint, |
|
attention_paths_to_split=None, |
|
additional_replacements=None, |
|
num_head_channels=1, |
|
): |
|
""" |
|
This does the final conversion step: take locally converted weights and apply a global renaming to them. It splits |
|
attention layers, and takes into account additional replacements that may arise. |
|
|
|
Assigns the weights to the new checkpoint. |
|
""" |
|
assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys." |
|
|
|
|
|
if attention_paths_to_split is not None: |
|
for path, path_map in attention_paths_to_split.items(): |
|
old_tensor = old_checkpoint[path] |
|
channels = old_tensor.shape[0] // 3 |
|
|
|
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1) |
|
|
|
num_heads = old_tensor.shape[0] // num_head_channels // 3 |
|
|
|
old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:]) |
|
query, key, value = old_tensor.split(channels // num_heads, dim=1) |
|
|
|
checkpoint[path_map["query"]] = query.reshape(target_shape) |
|
checkpoint[path_map["key"]] = key.reshape(target_shape) |
|
checkpoint[path_map["value"]] = value.reshape(target_shape) |
|
|
|
for path in paths: |
|
new_path = path["new"] |
|
|
|
|
|
if attention_paths_to_split is not None and new_path in attention_paths_to_split: |
|
continue |
|
|
|
|
|
new_path = new_path.replace("middle_block.0", "mid_block.resnets.0") |
|
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0") |
|
new_path = new_path.replace("middle_block.2", "mid_block.resnets.1") |
|
|
|
if additional_replacements is not None: |
|
for replacement in additional_replacements: |
|
new_path = new_path.replace(replacement["old"], replacement["new"]) |
|
|
|
|
|
is_attn_weight = "proj_attn.weight" in new_path or ("attentions" in new_path and "to_" in new_path) |
|
shape = old_checkpoint[path["old"]].shape |
|
if is_attn_weight and len(shape) == 3: |
|
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0] |
|
elif is_attn_weight and len(shape) == 4: |
|
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0, 0] |
|
else: |
|
checkpoint[new_path] = old_checkpoint[path["old"]] |
|
|
|
|
|
def create_vae_diffusers_config(config_type): |
|
|
|
if args.config_type == "test": |
|
vae_config = create_vae_diffusers_config_test() |
|
elif args.config_type == "big": |
|
vae_config = create_vae_diffusers_config_big() |
|
else: |
|
raise NotImplementedError( |
|
f"Config type {config_type} is not implemented, currently only config types" |
|
" 'test' and 'big' are available." |
|
) |
|
return vae_config |
|
|
|
|
|
def create_unidiffuser_unet_config(config_type, version): |
|
|
|
if args.config_type == "test": |
|
unet_config = create_unidiffuser_unet_config_test() |
|
elif args.config_type == "big": |
|
unet_config = create_unidiffuser_unet_config_big() |
|
else: |
|
raise NotImplementedError( |
|
f"Config type {config_type} is not implemented, currently only config types" |
|
" 'test' and 'big' are available." |
|
) |
|
|
|
if version == 1: |
|
unet_config["use_data_type_embedding"] = True |
|
return unet_config |
|
|
|
|
|
def create_text_decoder_config(config_type): |
|
|
|
if args.config_type == "test": |
|
text_decoder_config = create_text_decoder_config_test() |
|
elif args.config_type == "big": |
|
text_decoder_config = create_text_decoder_config_big() |
|
else: |
|
raise NotImplementedError( |
|
f"Config type {config_type} is not implemented, currently only config types" |
|
" 'test' and 'big' are available." |
|
) |
|
return text_decoder_config |
|
|
|
|
|
|
|
def create_vae_diffusers_config_test(): |
|
vae_config = { |
|
"sample_size": 32, |
|
"in_channels": 3, |
|
"out_channels": 3, |
|
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
"block_out_channels": [32, 64], |
|
"latent_channels": 4, |
|
"layers_per_block": 1, |
|
} |
|
return vae_config |
|
|
|
|
|
def create_unidiffuser_unet_config_test(): |
|
unet_config = { |
|
"text_dim": 32, |
|
"clip_img_dim": 32, |
|
"num_text_tokens": 77, |
|
"num_attention_heads": 2, |
|
"attention_head_dim": 8, |
|
"in_channels": 4, |
|
"out_channels": 4, |
|
"num_layers": 2, |
|
"dropout": 0.0, |
|
"norm_num_groups": 32, |
|
"attention_bias": False, |
|
"sample_size": 16, |
|
"patch_size": 2, |
|
"activation_fn": "gelu", |
|
"num_embeds_ada_norm": 1000, |
|
"norm_type": "layer_norm", |
|
"block_type": "unidiffuser", |
|
"pre_layer_norm": False, |
|
"use_timestep_embedding": False, |
|
"norm_elementwise_affine": True, |
|
"use_patch_pos_embed": False, |
|
"ff_final_dropout": True, |
|
"use_data_type_embedding": False, |
|
} |
|
return unet_config |
|
|
|
|
|
def create_text_decoder_config_test(): |
|
text_decoder_config = { |
|
"prefix_length": 77, |
|
"prefix_inner_dim": 32, |
|
"prefix_hidden_dim": 32, |
|
"vocab_size": 1025, |
|
"n_positions": 1024, |
|
"n_embd": 32, |
|
"n_layer": 5, |
|
"n_head": 4, |
|
"n_inner": 37, |
|
"activation_function": "gelu", |
|
"resid_pdrop": 0.1, |
|
"embd_pdrop": 0.1, |
|
"attn_pdrop": 0.1, |
|
"layer_norm_epsilon": 1e-5, |
|
"initializer_range": 0.02, |
|
} |
|
return text_decoder_config |
|
|
|
|
|
|
|
|
|
def create_vae_diffusers_config_big(): |
|
vae_config = { |
|
"sample_size": 256, |
|
"in_channels": 3, |
|
"out_channels": 3, |
|
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
"block_out_channels": [128, 256, 512, 512], |
|
"latent_channels": 4, |
|
"layers_per_block": 2, |
|
} |
|
return vae_config |
|
|
|
|
|
def create_unidiffuser_unet_config_big(): |
|
unet_config = { |
|
"text_dim": 64, |
|
"clip_img_dim": 512, |
|
"num_text_tokens": 77, |
|
"num_attention_heads": 24, |
|
"attention_head_dim": 64, |
|
"in_channels": 4, |
|
"out_channels": 4, |
|
"num_layers": 30, |
|
"dropout": 0.0, |
|
"norm_num_groups": 32, |
|
"attention_bias": False, |
|
"sample_size": 64, |
|
"patch_size": 2, |
|
"activation_fn": "gelu", |
|
"num_embeds_ada_norm": 1000, |
|
"norm_type": "layer_norm", |
|
"block_type": "unidiffuser", |
|
"pre_layer_norm": False, |
|
"use_timestep_embedding": False, |
|
"norm_elementwise_affine": True, |
|
"use_patch_pos_embed": False, |
|
"ff_final_dropout": True, |
|
"use_data_type_embedding": False, |
|
} |
|
return unet_config |
|
|
|
|
|
|
|
def create_text_decoder_config_big(): |
|
text_decoder_config = { |
|
"prefix_length": 77, |
|
"prefix_inner_dim": 768, |
|
"prefix_hidden_dim": 64, |
|
"vocab_size": 50258, |
|
"n_positions": 1024, |
|
"n_embd": 768, |
|
"n_layer": 12, |
|
"n_head": 12, |
|
"n_inner": 3072, |
|
"activation_function": "gelu", |
|
"resid_pdrop": 0.1, |
|
"embd_pdrop": 0.1, |
|
"attn_pdrop": 0.1, |
|
"layer_norm_epsilon": 1e-5, |
|
"initializer_range": 0.02, |
|
} |
|
return text_decoder_config |
|
|
|
|
|
|
|
def convert_vae_to_diffusers(ckpt, diffusers_model, num_head_channels=1): |
|
""" |
|
Converts a UniDiffuser autoencoder_kl.pth checkpoint to a diffusers AutoencoderKL. |
|
""" |
|
|
|
vae_state_dict = torch.load(ckpt, map_location="cpu") |
|
|
|
new_checkpoint = {} |
|
|
|
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"] |
|
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"] |
|
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"] |
|
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"] |
|
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"] |
|
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"] |
|
|
|
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"] |
|
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"] |
|
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"] |
|
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"] |
|
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"] |
|
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"] |
|
|
|
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"] |
|
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"] |
|
new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"] |
|
new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"] |
|
|
|
|
|
num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer}) |
|
down_blocks = { |
|
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks) |
|
} |
|
|
|
|
|
num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer}) |
|
up_blocks = { |
|
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks) |
|
} |
|
|
|
for i in range(num_down_blocks): |
|
resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key] |
|
|
|
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: |
|
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop( |
|
f"encoder.down.{i}.downsample.conv.weight" |
|
) |
|
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop( |
|
f"encoder.down.{i}.downsample.conv.bias" |
|
) |
|
|
|
paths = renew_vae_resnet_paths(resnets) |
|
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"} |
|
assign_to_checkpoint( |
|
paths, |
|
new_checkpoint, |
|
vae_state_dict, |
|
additional_replacements=[meta_path], |
|
num_head_channels=num_head_channels, |
|
) |
|
|
|
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key] |
|
num_mid_res_blocks = 2 |
|
for i in range(1, num_mid_res_blocks + 1): |
|
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key] |
|
|
|
paths = renew_vae_resnet_paths(resnets) |
|
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} |
|
assign_to_checkpoint( |
|
paths, |
|
new_checkpoint, |
|
vae_state_dict, |
|
additional_replacements=[meta_path], |
|
num_head_channels=num_head_channels, |
|
) |
|
|
|
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key] |
|
paths = renew_vae_attention_paths(mid_attentions) |
|
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} |
|
assign_to_checkpoint( |
|
paths, |
|
new_checkpoint, |
|
vae_state_dict, |
|
additional_replacements=[meta_path], |
|
num_head_channels=num_head_channels, |
|
) |
|
conv_attn_to_linear(new_checkpoint) |
|
|
|
for i in range(num_up_blocks): |
|
block_id = num_up_blocks - 1 - i |
|
resnets = [ |
|
key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key |
|
] |
|
|
|
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: |
|
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[ |
|
f"decoder.up.{block_id}.upsample.conv.weight" |
|
] |
|
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[ |
|
f"decoder.up.{block_id}.upsample.conv.bias" |
|
] |
|
|
|
paths = renew_vae_resnet_paths(resnets) |
|
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"} |
|
assign_to_checkpoint( |
|
paths, |
|
new_checkpoint, |
|
vae_state_dict, |
|
additional_replacements=[meta_path], |
|
num_head_channels=num_head_channels, |
|
) |
|
|
|
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key] |
|
num_mid_res_blocks = 2 |
|
for i in range(1, num_mid_res_blocks + 1): |
|
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key] |
|
|
|
paths = renew_vae_resnet_paths(resnets) |
|
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} |
|
assign_to_checkpoint( |
|
paths, |
|
new_checkpoint, |
|
vae_state_dict, |
|
additional_replacements=[meta_path], |
|
num_head_channels=num_head_channels, |
|
) |
|
|
|
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key] |
|
paths = renew_vae_attention_paths(mid_attentions) |
|
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} |
|
assign_to_checkpoint( |
|
paths, |
|
new_checkpoint, |
|
vae_state_dict, |
|
additional_replacements=[meta_path], |
|
num_head_channels=num_head_channels, |
|
) |
|
conv_attn_to_linear(new_checkpoint) |
|
|
|
missing_keys, unexpected_keys = diffusers_model.load_state_dict(new_checkpoint) |
|
for missing_key in missing_keys: |
|
print(f"Missing key: {missing_key}") |
|
for unexpected_key in unexpected_keys: |
|
print(f"Unexpected key: {unexpected_key}") |
|
|
|
return diffusers_model |
|
|
|
|
|
def convert_uvit_block_to_diffusers_block( |
|
uvit_state_dict, |
|
new_state_dict, |
|
block_prefix, |
|
new_prefix="transformer.transformer_", |
|
skip_connection=False, |
|
): |
|
""" |
|
Maps the keys in a UniDiffuser transformer block (`Block`) to the keys in a diffusers transformer block |
|
(`UTransformerBlock`/`UniDiffuserBlock`). |
|
""" |
|
prefix = new_prefix + block_prefix |
|
if skip_connection: |
|
new_state_dict[prefix + ".skip.skip_linear.weight"] = uvit_state_dict[block_prefix + ".skip_linear.weight"] |
|
new_state_dict[prefix + ".skip.skip_linear.bias"] = uvit_state_dict[block_prefix + ".skip_linear.bias"] |
|
new_state_dict[prefix + ".skip.norm.weight"] = uvit_state_dict[block_prefix + ".norm1.weight"] |
|
new_state_dict[prefix + ".skip.norm.bias"] = uvit_state_dict[block_prefix + ".norm1.bias"] |
|
|
|
|
|
prefix += ".block" |
|
|
|
|
|
qkv = uvit_state_dict[block_prefix + ".attn.qkv.weight"] |
|
new_attn_keys = [".attn1.to_q.weight", ".attn1.to_k.weight", ".attn1.to_v.weight"] |
|
new_attn_keys = [prefix + key for key in new_attn_keys] |
|
shape = qkv.shape[0] // len(new_attn_keys) |
|
for i, attn_key in enumerate(new_attn_keys): |
|
new_state_dict[attn_key] = qkv[i * shape : (i + 1) * shape] |
|
|
|
new_state_dict[prefix + ".attn1.to_out.0.weight"] = uvit_state_dict[block_prefix + ".attn.proj.weight"] |
|
new_state_dict[prefix + ".attn1.to_out.0.bias"] = uvit_state_dict[block_prefix + ".attn.proj.bias"] |
|
new_state_dict[prefix + ".norm1.weight"] = uvit_state_dict[block_prefix + ".norm2.weight"] |
|
new_state_dict[prefix + ".norm1.bias"] = uvit_state_dict[block_prefix + ".norm2.bias"] |
|
new_state_dict[prefix + ".ff.net.0.proj.weight"] = uvit_state_dict[block_prefix + ".mlp.fc1.weight"] |
|
new_state_dict[prefix + ".ff.net.0.proj.bias"] = uvit_state_dict[block_prefix + ".mlp.fc1.bias"] |
|
new_state_dict[prefix + ".ff.net.2.weight"] = uvit_state_dict[block_prefix + ".mlp.fc2.weight"] |
|
new_state_dict[prefix + ".ff.net.2.bias"] = uvit_state_dict[block_prefix + ".mlp.fc2.bias"] |
|
new_state_dict[prefix + ".norm3.weight"] = uvit_state_dict[block_prefix + ".norm3.weight"] |
|
new_state_dict[prefix + ".norm3.bias"] = uvit_state_dict[block_prefix + ".norm3.bias"] |
|
|
|
return uvit_state_dict, new_state_dict |
|
|
|
|
|
def convert_uvit_to_diffusers(ckpt, diffusers_model): |
|
""" |
|
Converts a UniDiffuser uvit_v*.pth checkpoint to a diffusers UniDiffusersModel. |
|
""" |
|
|
|
uvit_state_dict = torch.load(ckpt, map_location="cpu") |
|
|
|
new_state_dict = {} |
|
|
|
|
|
new_state_dict["vae_img_in.proj.weight"] = uvit_state_dict["patch_embed.proj.weight"] |
|
new_state_dict["vae_img_in.proj.bias"] = uvit_state_dict["patch_embed.proj.bias"] |
|
new_state_dict["clip_img_in.weight"] = uvit_state_dict["clip_img_embed.weight"] |
|
new_state_dict["clip_img_in.bias"] = uvit_state_dict["clip_img_embed.bias"] |
|
new_state_dict["text_in.weight"] = uvit_state_dict["text_embed.weight"] |
|
new_state_dict["text_in.bias"] = uvit_state_dict["text_embed.bias"] |
|
|
|
new_state_dict["pos_embed"] = uvit_state_dict["pos_embed"] |
|
|
|
|
|
if "token_embedding.weight" in uvit_state_dict and diffusers_model.use_data_type_embedding: |
|
new_state_dict["data_type_pos_embed_token"] = uvit_state_dict["pos_embed_token"] |
|
new_state_dict["data_type_token_embedding.weight"] = uvit_state_dict["token_embedding.weight"] |
|
|
|
|
|
|
|
new_state_dict["transformer.pos_embed.proj.weight"] = uvit_state_dict["patch_embed.proj.weight"] |
|
new_state_dict["transformer.pos_embed.proj.bias"] = uvit_state_dict["patch_embed.proj.bias"] |
|
|
|
|
|
new_state_dict["transformer.norm_out.weight"] = uvit_state_dict["norm.weight"] |
|
new_state_dict["transformer.norm_out.bias"] = uvit_state_dict["norm.bias"] |
|
|
|
new_state_dict["vae_img_out.weight"] = uvit_state_dict["decoder_pred.weight"] |
|
new_state_dict["vae_img_out.bias"] = uvit_state_dict["decoder_pred.bias"] |
|
new_state_dict["clip_img_out.weight"] = uvit_state_dict["clip_img_out.weight"] |
|
new_state_dict["clip_img_out.bias"] = uvit_state_dict["clip_img_out.bias"] |
|
new_state_dict["text_out.weight"] = uvit_state_dict["text_out.weight"] |
|
new_state_dict["text_out.bias"] = uvit_state_dict["text_out.bias"] |
|
|
|
|
|
in_blocks_prefixes = {".".join(layer.split(".")[:2]) for layer in uvit_state_dict if "in_blocks" in layer} |
|
for in_block_prefix in list(in_blocks_prefixes): |
|
convert_uvit_block_to_diffusers_block(uvit_state_dict, new_state_dict, in_block_prefix) |
|
|
|
|
|
|
|
convert_uvit_block_to_diffusers_block(uvit_state_dict, new_state_dict, "mid_block") |
|
|
|
|
|
out_blocks_prefixes = {".".join(layer.split(".")[:2]) for layer in uvit_state_dict if "out_blocks" in layer} |
|
for out_block_prefix in list(out_blocks_prefixes): |
|
convert_uvit_block_to_diffusers_block(uvit_state_dict, new_state_dict, out_block_prefix, skip_connection=True) |
|
|
|
missing_keys, unexpected_keys = diffusers_model.load_state_dict(new_state_dict) |
|
for missing_key in missing_keys: |
|
print(f"Missing key: {missing_key}") |
|
for unexpected_key in unexpected_keys: |
|
print(f"Unexpected key: {unexpected_key}") |
|
|
|
return diffusers_model |
|
|
|
|
|
def convert_caption_decoder_to_diffusers(ckpt, diffusers_model): |
|
""" |
|
Converts a UniDiffuser caption_decoder.pth checkpoint to a diffusers UniDiffuserTextDecoder. |
|
""" |
|
|
|
checkpoint_state_dict = torch.load(ckpt, map_location="cpu") |
|
decoder_state_dict = {} |
|
|
|
caption_decoder_key = "module." |
|
for key in checkpoint_state_dict: |
|
if key.startswith(caption_decoder_key): |
|
decoder_state_dict[key.replace(caption_decoder_key, "")] = checkpoint_state_dict.get(key) |
|
else: |
|
decoder_state_dict[key] = checkpoint_state_dict.get(key) |
|
|
|
new_state_dict = {} |
|
|
|
|
|
new_state_dict["encode_prefix.weight"] = decoder_state_dict["encode_prefix.weight"] |
|
new_state_dict["encode_prefix.bias"] = decoder_state_dict["encode_prefix.bias"] |
|
new_state_dict["decode_prefix.weight"] = decoder_state_dict["decode_prefix.weight"] |
|
new_state_dict["decode_prefix.bias"] = decoder_state_dict["decode_prefix.bias"] |
|
|
|
|
|
for key, val in decoder_state_dict.items(): |
|
if key.startswith("gpt"): |
|
suffix = key[len("gpt") :] |
|
new_state_dict["transformer" + suffix] = val |
|
|
|
missing_keys, unexpected_keys = diffusers_model.load_state_dict(new_state_dict) |
|
for missing_key in missing_keys: |
|
print(f"Missing key: {missing_key}") |
|
for unexpected_key in unexpected_keys: |
|
print(f"Unexpected key: {unexpected_key}") |
|
|
|
return diffusers_model |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument( |
|
"--caption_decoder_checkpoint_path", |
|
default=None, |
|
type=str, |
|
required=False, |
|
help="Path to caption decoder checkpoint to convert.", |
|
) |
|
parser.add_argument( |
|
"--uvit_checkpoint_path", default=None, type=str, required=False, help="Path to U-ViT checkpoint to convert." |
|
) |
|
parser.add_argument( |
|
"--vae_checkpoint_path", |
|
default=None, |
|
type=str, |
|
required=False, |
|
help="Path to VAE checkpoint to convert.", |
|
) |
|
parser.add_argument( |
|
"--pipeline_output_path", |
|
default=None, |
|
type=str, |
|
required=True, |
|
help="Path to save the output pipeline to.", |
|
) |
|
parser.add_argument( |
|
"--config_type", |
|
default="test", |
|
type=str, |
|
help=( |
|
"Config type to use. Should be 'test' to create small models for testing or 'big' to convert a full" |
|
" checkpoint." |
|
), |
|
) |
|
parser.add_argument( |
|
"--version", |
|
default=0, |
|
type=int, |
|
help="The UniDiffuser model type to convert to. Should be 0 for UniDiffuser-v0 and 1 for UniDiffuser-v1.", |
|
) |
|
parser.add_argument( |
|
"--safe_serialization", |
|
action="store_true", |
|
help="Whether to use safetensors/safe seialization when saving the pipeline.", |
|
) |
|
|
|
args = parser.parse_args() |
|
|
|
|
|
if args.vae_checkpoint_path is not None: |
|
vae_config = create_vae_diffusers_config(args.config_type) |
|
vae = AutoencoderKL(**vae_config) |
|
vae = convert_vae_to_diffusers(args.vae_checkpoint_path, vae) |
|
|
|
|
|
if args.uvit_checkpoint_path is not None: |
|
unet_config = create_unidiffuser_unet_config(args.config_type, args.version) |
|
unet = UniDiffuserModel(**unet_config) |
|
unet = convert_uvit_to_diffusers(args.uvit_checkpoint_path, unet) |
|
|
|
|
|
if args.caption_decoder_checkpoint_path is not None: |
|
text_decoder_config = create_text_decoder_config(args.config_type) |
|
text_decoder = UniDiffuserTextDecoder(**text_decoder_config) |
|
text_decoder = convert_caption_decoder_to_diffusers(args.caption_decoder_checkpoint_path, text_decoder) |
|
|
|
|
|
scheduler_config = SCHEDULER_CONFIG |
|
scheduler = DPMSolverMultistepScheduler( |
|
beta_start=scheduler_config.beta_start, |
|
beta_end=scheduler_config.beta_end, |
|
beta_schedule=scheduler_config.beta_schedule, |
|
solver_order=scheduler_config.solver_order, |
|
) |
|
|
|
if args.config_type == "test": |
|
|
|
torch.manual_seed(0) |
|
clip_text_encoder_config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
) |
|
text_encoder = CLIPTextModel(clip_text_encoder_config) |
|
clip_tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
|
|
torch.manual_seed(0) |
|
clip_image_encoder_config = CLIPVisionConfig( |
|
image_size=32, |
|
patch_size=2, |
|
num_channels=3, |
|
hidden_size=32, |
|
projection_dim=32, |
|
num_hidden_layers=5, |
|
num_attention_heads=4, |
|
intermediate_size=37, |
|
dropout=0.1, |
|
attention_dropout=0.1, |
|
initializer_range=0.02, |
|
) |
|
image_encoder = CLIPVisionModelWithProjection(clip_image_encoder_config) |
|
image_processor = CLIPImageProcessor(crop_size=32, size=32) |
|
|
|
|
|
text_tokenizer = GPT2Tokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model") |
|
eos = "<|EOS|>" |
|
special_tokens_dict = {"eos_token": eos} |
|
text_tokenizer.add_special_tokens(special_tokens_dict) |
|
elif args.config_type == "big": |
|
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14") |
|
clip_tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14") |
|
|
|
image_encoder = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-base-patch32") |
|
image_processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32") |
|
|
|
|
|
text_tokenizer = GPT2Tokenizer.from_pretrained("gpt2") |
|
eos = "<|EOS|>" |
|
special_tokens_dict = {"eos_token": eos} |
|
text_tokenizer.add_special_tokens(special_tokens_dict) |
|
else: |
|
raise NotImplementedError( |
|
f"Config type {args.config_type} is not implemented, currently only config types" |
|
" 'test' and 'big' are available." |
|
) |
|
|
|
pipeline = UniDiffuserPipeline( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
image_encoder=image_encoder, |
|
clip_image_processor=image_processor, |
|
clip_tokenizer=clip_tokenizer, |
|
text_decoder=text_decoder, |
|
text_tokenizer=text_tokenizer, |
|
unet=unet, |
|
scheduler=scheduler, |
|
) |
|
pipeline.save_pretrained(args.pipeline_output_path, safe_serialization=args.safe_serialization) |
|
|