File size: 31,449 Bytes
ef4d689 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 |
# Convert the original UniDiffuser checkpoints into diffusers equivalents.
import argparse
from argparse import Namespace
import torch
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModel,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
GPT2Tokenizer,
)
from diffusers import (
AutoencoderKL,
DPMSolverMultistepScheduler,
UniDiffuserModel,
UniDiffuserPipeline,
UniDiffuserTextDecoder,
)
SCHEDULER_CONFIG = Namespace(
**{
"beta_start": 0.00085,
"beta_end": 0.012,
"beta_schedule": "scaled_linear",
"solver_order": 3,
}
)
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.shave_segments
def shave_segments(path, n_shave_prefix_segments=1):
"""
Removes segments. Positive values shave the first segments, negative shave the last segments.
"""
if n_shave_prefix_segments >= 0:
return ".".join(path.split(".")[n_shave_prefix_segments:])
else:
return ".".join(path.split(".")[:n_shave_prefix_segments])
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.renew_vae_resnet_paths
def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside resnets to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item
new_item = new_item.replace("nin_shortcut", "conv_shortcut")
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.renew_vae_attention_paths
def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside attentions to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item
new_item = new_item.replace("norm.weight", "group_norm.weight")
new_item = new_item.replace("norm.bias", "group_norm.bias")
new_item = new_item.replace("q.weight", "to_q.weight")
new_item = new_item.replace("q.bias", "to_q.bias")
new_item = new_item.replace("k.weight", "to_k.weight")
new_item = new_item.replace("k.bias", "to_k.bias")
new_item = new_item.replace("v.weight", "to_v.weight")
new_item = new_item.replace("v.bias", "to_v.bias")
new_item = new_item.replace("proj_out.weight", "to_out.0.weight")
new_item = new_item.replace("proj_out.bias", "to_out.0.bias")
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.conv_attn_to_linear
def conv_attn_to_linear(checkpoint):
keys = list(checkpoint.keys())
attn_keys = ["query.weight", "key.weight", "value.weight"]
for key in keys:
if ".".join(key.split(".")[-2:]) in attn_keys:
if checkpoint[key].ndim > 2:
checkpoint[key] = checkpoint[key][:, :, 0, 0]
elif "proj_attn.weight" in key:
if checkpoint[key].ndim > 2:
checkpoint[key] = checkpoint[key][:, :, 0]
# Modified from diffusers.pipelines.stable_diffusion.convert_from_ckpt.assign_to_checkpoint
# config.num_head_channels => num_head_channels
def assign_to_checkpoint(
paths,
checkpoint,
old_checkpoint,
attention_paths_to_split=None,
additional_replacements=None,
num_head_channels=1,
):
"""
This does the final conversion step: take locally converted weights and apply a global renaming to them. It splits
attention layers, and takes into account additional replacements that may arise.
Assigns the weights to the new checkpoint.
"""
assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys."
# Splits the attention layers into three variables.
if attention_paths_to_split is not None:
for path, path_map in attention_paths_to_split.items():
old_tensor = old_checkpoint[path]
channels = old_tensor.shape[0] // 3
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1)
num_heads = old_tensor.shape[0] // num_head_channels // 3
old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:])
query, key, value = old_tensor.split(channels // num_heads, dim=1)
checkpoint[path_map["query"]] = query.reshape(target_shape)
checkpoint[path_map["key"]] = key.reshape(target_shape)
checkpoint[path_map["value"]] = value.reshape(target_shape)
for path in paths:
new_path = path["new"]
# These have already been assigned
if attention_paths_to_split is not None and new_path in attention_paths_to_split:
continue
# Global renaming happens here
new_path = new_path.replace("middle_block.0", "mid_block.resnets.0")
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0")
new_path = new_path.replace("middle_block.2", "mid_block.resnets.1")
if additional_replacements is not None:
for replacement in additional_replacements:
new_path = new_path.replace(replacement["old"], replacement["new"])
# proj_attn.weight has to be converted from conv 1D to linear
is_attn_weight = "proj_attn.weight" in new_path or ("attentions" in new_path and "to_" in new_path)
shape = old_checkpoint[path["old"]].shape
if is_attn_weight and len(shape) == 3:
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0]
elif is_attn_weight and len(shape) == 4:
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0, 0]
else:
checkpoint[new_path] = old_checkpoint[path["old"]]
def create_vae_diffusers_config(config_type):
# Hardcoded for now
if args.config_type == "test":
vae_config = create_vae_diffusers_config_test()
elif args.config_type == "big":
vae_config = create_vae_diffusers_config_big()
else:
raise NotImplementedError(
f"Config type {config_type} is not implemented, currently only config types"
" 'test' and 'big' are available."
)
return vae_config
def create_unidiffuser_unet_config(config_type, version):
# Hardcoded for now
if args.config_type == "test":
unet_config = create_unidiffuser_unet_config_test()
elif args.config_type == "big":
unet_config = create_unidiffuser_unet_config_big()
else:
raise NotImplementedError(
f"Config type {config_type} is not implemented, currently only config types"
" 'test' and 'big' are available."
)
# Unidiffuser-v1 uses data type embeddings
if version == 1:
unet_config["use_data_type_embedding"] = True
return unet_config
def create_text_decoder_config(config_type):
# Hardcoded for now
if args.config_type == "test":
text_decoder_config = create_text_decoder_config_test()
elif args.config_type == "big":
text_decoder_config = create_text_decoder_config_big()
else:
raise NotImplementedError(
f"Config type {config_type} is not implemented, currently only config types"
" 'test' and 'big' are available."
)
return text_decoder_config
# Hardcoded configs for test versions of the UniDiffuser models, corresponding to those in the fast default tests.
def create_vae_diffusers_config_test():
vae_config = {
"sample_size": 32,
"in_channels": 3,
"out_channels": 3,
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
"block_out_channels": [32, 64],
"latent_channels": 4,
"layers_per_block": 1,
}
return vae_config
def create_unidiffuser_unet_config_test():
unet_config = {
"text_dim": 32,
"clip_img_dim": 32,
"num_text_tokens": 77,
"num_attention_heads": 2,
"attention_head_dim": 8,
"in_channels": 4,
"out_channels": 4,
"num_layers": 2,
"dropout": 0.0,
"norm_num_groups": 32,
"attention_bias": False,
"sample_size": 16,
"patch_size": 2,
"activation_fn": "gelu",
"num_embeds_ada_norm": 1000,
"norm_type": "layer_norm",
"block_type": "unidiffuser",
"pre_layer_norm": False,
"use_timestep_embedding": False,
"norm_elementwise_affine": True,
"use_patch_pos_embed": False,
"ff_final_dropout": True,
"use_data_type_embedding": False,
}
return unet_config
def create_text_decoder_config_test():
text_decoder_config = {
"prefix_length": 77,
"prefix_inner_dim": 32,
"prefix_hidden_dim": 32,
"vocab_size": 1025, # 1024 + 1 for new EOS token
"n_positions": 1024,
"n_embd": 32,
"n_layer": 5,
"n_head": 4,
"n_inner": 37,
"activation_function": "gelu",
"resid_pdrop": 0.1,
"embd_pdrop": 0.1,
"attn_pdrop": 0.1,
"layer_norm_epsilon": 1e-5,
"initializer_range": 0.02,
}
return text_decoder_config
# Hardcoded configs for the UniDiffuser V1 model at https://huggingface.co/thu-ml/unidiffuser-v1
# See also https://github.com/thu-ml/unidiffuser/blob/main/configs/sample_unidiffuser_v1.py
def create_vae_diffusers_config_big():
vae_config = {
"sample_size": 256,
"in_channels": 3,
"out_channels": 3,
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"],
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"block_out_channels": [128, 256, 512, 512],
"latent_channels": 4,
"layers_per_block": 2,
}
return vae_config
def create_unidiffuser_unet_config_big():
unet_config = {
"text_dim": 64,
"clip_img_dim": 512,
"num_text_tokens": 77,
"num_attention_heads": 24,
"attention_head_dim": 64,
"in_channels": 4,
"out_channels": 4,
"num_layers": 30,
"dropout": 0.0,
"norm_num_groups": 32,
"attention_bias": False,
"sample_size": 64,
"patch_size": 2,
"activation_fn": "gelu",
"num_embeds_ada_norm": 1000,
"norm_type": "layer_norm",
"block_type": "unidiffuser",
"pre_layer_norm": False,
"use_timestep_embedding": False,
"norm_elementwise_affine": True,
"use_patch_pos_embed": False,
"ff_final_dropout": True,
"use_data_type_embedding": False,
}
return unet_config
# From https://huggingface.co/gpt2/blob/main/config.json, the GPT2 checkpoint used by UniDiffuser
def create_text_decoder_config_big():
text_decoder_config = {
"prefix_length": 77,
"prefix_inner_dim": 768,
"prefix_hidden_dim": 64,
"vocab_size": 50258, # 50257 + 1 for new EOS token
"n_positions": 1024,
"n_embd": 768,
"n_layer": 12,
"n_head": 12,
"n_inner": 3072,
"activation_function": "gelu",
"resid_pdrop": 0.1,
"embd_pdrop": 0.1,
"attn_pdrop": 0.1,
"layer_norm_epsilon": 1e-5,
"initializer_range": 0.02,
}
return text_decoder_config
# Based on diffusers.pipelines.stable_diffusion.convert_from_ckpt.convert_ldm_vae_checkpoint
def convert_vae_to_diffusers(ckpt, diffusers_model, num_head_channels=1):
"""
Converts a UniDiffuser autoencoder_kl.pth checkpoint to a diffusers AutoencoderKL.
"""
# autoencoder_kl.pth ckpt is a torch state dict
vae_state_dict = torch.load(ckpt, map_location="cpu")
new_checkpoint = {}
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"]
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"]
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"]
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"]
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"]
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"]
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"]
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"]
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"]
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"]
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"]
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"]
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"]
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"]
new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"]
new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"]
# Retrieves the keys for the encoder down blocks only
num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer})
down_blocks = {
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks)
}
# Retrieves the keys for the decoder up blocks only
num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer})
up_blocks = {
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)
}
for i in range(num_down_blocks):
resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key]
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop(
f"encoder.down.{i}.downsample.conv.weight"
)
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop(
f"encoder.down.{i}.downsample.conv.bias"
)
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"}
assign_to_checkpoint(
paths,
new_checkpoint,
vae_state_dict,
additional_replacements=[meta_path],
num_head_channels=num_head_channels, # not used in vae
)
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
num_mid_res_blocks = 2
for i in range(1, num_mid_res_blocks + 1):
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
assign_to_checkpoint(
paths,
new_checkpoint,
vae_state_dict,
additional_replacements=[meta_path],
num_head_channels=num_head_channels, # not used in vae
)
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
paths = renew_vae_attention_paths(mid_attentions)
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(
paths,
new_checkpoint,
vae_state_dict,
additional_replacements=[meta_path],
num_head_channels=num_head_channels, # not used in vae
)
conv_attn_to_linear(new_checkpoint)
for i in range(num_up_blocks):
block_id = num_up_blocks - 1 - i
resnets = [
key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
]
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[
f"decoder.up.{block_id}.upsample.conv.weight"
]
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[
f"decoder.up.{block_id}.upsample.conv.bias"
]
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"}
assign_to_checkpoint(
paths,
new_checkpoint,
vae_state_dict,
additional_replacements=[meta_path],
num_head_channels=num_head_channels, # not used in vae
)
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
num_mid_res_blocks = 2
for i in range(1, num_mid_res_blocks + 1):
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
assign_to_checkpoint(
paths,
new_checkpoint,
vae_state_dict,
additional_replacements=[meta_path],
num_head_channels=num_head_channels, # not used in vae
)
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
paths = renew_vae_attention_paths(mid_attentions)
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(
paths,
new_checkpoint,
vae_state_dict,
additional_replacements=[meta_path],
num_head_channels=num_head_channels, # not used in vae
)
conv_attn_to_linear(new_checkpoint)
missing_keys, unexpected_keys = diffusers_model.load_state_dict(new_checkpoint)
for missing_key in missing_keys:
print(f"Missing key: {missing_key}")
for unexpected_key in unexpected_keys:
print(f"Unexpected key: {unexpected_key}")
return diffusers_model
def convert_uvit_block_to_diffusers_block(
uvit_state_dict,
new_state_dict,
block_prefix,
new_prefix="transformer.transformer_",
skip_connection=False,
):
"""
Maps the keys in a UniDiffuser transformer block (`Block`) to the keys in a diffusers transformer block
(`UTransformerBlock`/`UniDiffuserBlock`).
"""
prefix = new_prefix + block_prefix
if skip_connection:
new_state_dict[prefix + ".skip.skip_linear.weight"] = uvit_state_dict[block_prefix + ".skip_linear.weight"]
new_state_dict[prefix + ".skip.skip_linear.bias"] = uvit_state_dict[block_prefix + ".skip_linear.bias"]
new_state_dict[prefix + ".skip.norm.weight"] = uvit_state_dict[block_prefix + ".norm1.weight"]
new_state_dict[prefix + ".skip.norm.bias"] = uvit_state_dict[block_prefix + ".norm1.bias"]
# Create the prefix string for out_blocks.
prefix += ".block"
# Split up attention qkv.weight into to_q.weight, to_k.weight, to_v.weight
qkv = uvit_state_dict[block_prefix + ".attn.qkv.weight"]
new_attn_keys = [".attn1.to_q.weight", ".attn1.to_k.weight", ".attn1.to_v.weight"]
new_attn_keys = [prefix + key for key in new_attn_keys]
shape = qkv.shape[0] // len(new_attn_keys)
for i, attn_key in enumerate(new_attn_keys):
new_state_dict[attn_key] = qkv[i * shape : (i + 1) * shape]
new_state_dict[prefix + ".attn1.to_out.0.weight"] = uvit_state_dict[block_prefix + ".attn.proj.weight"]
new_state_dict[prefix + ".attn1.to_out.0.bias"] = uvit_state_dict[block_prefix + ".attn.proj.bias"]
new_state_dict[prefix + ".norm1.weight"] = uvit_state_dict[block_prefix + ".norm2.weight"]
new_state_dict[prefix + ".norm1.bias"] = uvit_state_dict[block_prefix + ".norm2.bias"]
new_state_dict[prefix + ".ff.net.0.proj.weight"] = uvit_state_dict[block_prefix + ".mlp.fc1.weight"]
new_state_dict[prefix + ".ff.net.0.proj.bias"] = uvit_state_dict[block_prefix + ".mlp.fc1.bias"]
new_state_dict[prefix + ".ff.net.2.weight"] = uvit_state_dict[block_prefix + ".mlp.fc2.weight"]
new_state_dict[prefix + ".ff.net.2.bias"] = uvit_state_dict[block_prefix + ".mlp.fc2.bias"]
new_state_dict[prefix + ".norm3.weight"] = uvit_state_dict[block_prefix + ".norm3.weight"]
new_state_dict[prefix + ".norm3.bias"] = uvit_state_dict[block_prefix + ".norm3.bias"]
return uvit_state_dict, new_state_dict
def convert_uvit_to_diffusers(ckpt, diffusers_model):
"""
Converts a UniDiffuser uvit_v*.pth checkpoint to a diffusers UniDiffusersModel.
"""
# uvit_v*.pth ckpt is a torch state dict
uvit_state_dict = torch.load(ckpt, map_location="cpu")
new_state_dict = {}
# Input layers
new_state_dict["vae_img_in.proj.weight"] = uvit_state_dict["patch_embed.proj.weight"]
new_state_dict["vae_img_in.proj.bias"] = uvit_state_dict["patch_embed.proj.bias"]
new_state_dict["clip_img_in.weight"] = uvit_state_dict["clip_img_embed.weight"]
new_state_dict["clip_img_in.bias"] = uvit_state_dict["clip_img_embed.bias"]
new_state_dict["text_in.weight"] = uvit_state_dict["text_embed.weight"]
new_state_dict["text_in.bias"] = uvit_state_dict["text_embed.bias"]
new_state_dict["pos_embed"] = uvit_state_dict["pos_embed"]
# Handle data type token embeddings for UniDiffuser-v1
if "token_embedding.weight" in uvit_state_dict and diffusers_model.use_data_type_embedding:
new_state_dict["data_type_pos_embed_token"] = uvit_state_dict["pos_embed_token"]
new_state_dict["data_type_token_embedding.weight"] = uvit_state_dict["token_embedding.weight"]
# Also initialize the PatchEmbedding in UTransformer2DModel with the PatchEmbedding from the checkpoint.
# This isn't used in the current implementation, so might want to remove.
new_state_dict["transformer.pos_embed.proj.weight"] = uvit_state_dict["patch_embed.proj.weight"]
new_state_dict["transformer.pos_embed.proj.bias"] = uvit_state_dict["patch_embed.proj.bias"]
# Output layers
new_state_dict["transformer.norm_out.weight"] = uvit_state_dict["norm.weight"]
new_state_dict["transformer.norm_out.bias"] = uvit_state_dict["norm.bias"]
new_state_dict["vae_img_out.weight"] = uvit_state_dict["decoder_pred.weight"]
new_state_dict["vae_img_out.bias"] = uvit_state_dict["decoder_pred.bias"]
new_state_dict["clip_img_out.weight"] = uvit_state_dict["clip_img_out.weight"]
new_state_dict["clip_img_out.bias"] = uvit_state_dict["clip_img_out.bias"]
new_state_dict["text_out.weight"] = uvit_state_dict["text_out.weight"]
new_state_dict["text_out.bias"] = uvit_state_dict["text_out.bias"]
# in_blocks
in_blocks_prefixes = {".".join(layer.split(".")[:2]) for layer in uvit_state_dict if "in_blocks" in layer}
for in_block_prefix in list(in_blocks_prefixes):
convert_uvit_block_to_diffusers_block(uvit_state_dict, new_state_dict, in_block_prefix)
# mid_block
# Assume there's only one mid block
convert_uvit_block_to_diffusers_block(uvit_state_dict, new_state_dict, "mid_block")
# out_blocks
out_blocks_prefixes = {".".join(layer.split(".")[:2]) for layer in uvit_state_dict if "out_blocks" in layer}
for out_block_prefix in list(out_blocks_prefixes):
convert_uvit_block_to_diffusers_block(uvit_state_dict, new_state_dict, out_block_prefix, skip_connection=True)
missing_keys, unexpected_keys = diffusers_model.load_state_dict(new_state_dict)
for missing_key in missing_keys:
print(f"Missing key: {missing_key}")
for unexpected_key in unexpected_keys:
print(f"Unexpected key: {unexpected_key}")
return diffusers_model
def convert_caption_decoder_to_diffusers(ckpt, diffusers_model):
"""
Converts a UniDiffuser caption_decoder.pth checkpoint to a diffusers UniDiffuserTextDecoder.
"""
# caption_decoder.pth ckpt is a torch state dict
checkpoint_state_dict = torch.load(ckpt, map_location="cpu")
decoder_state_dict = {}
# Remove the "module." prefix, if necessary
caption_decoder_key = "module."
for key in checkpoint_state_dict:
if key.startswith(caption_decoder_key):
decoder_state_dict[key.replace(caption_decoder_key, "")] = checkpoint_state_dict.get(key)
else:
decoder_state_dict[key] = checkpoint_state_dict.get(key)
new_state_dict = {}
# Encoder and Decoder
new_state_dict["encode_prefix.weight"] = decoder_state_dict["encode_prefix.weight"]
new_state_dict["encode_prefix.bias"] = decoder_state_dict["encode_prefix.bias"]
new_state_dict["decode_prefix.weight"] = decoder_state_dict["decode_prefix.weight"]
new_state_dict["decode_prefix.bias"] = decoder_state_dict["decode_prefix.bias"]
# Internal GPT2LMHeadModel transformer model
for key, val in decoder_state_dict.items():
if key.startswith("gpt"):
suffix = key[len("gpt") :]
new_state_dict["transformer" + suffix] = val
missing_keys, unexpected_keys = diffusers_model.load_state_dict(new_state_dict)
for missing_key in missing_keys:
print(f"Missing key: {missing_key}")
for unexpected_key in unexpected_keys:
print(f"Unexpected key: {unexpected_key}")
return diffusers_model
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--caption_decoder_checkpoint_path",
default=None,
type=str,
required=False,
help="Path to caption decoder checkpoint to convert.",
)
parser.add_argument(
"--uvit_checkpoint_path", default=None, type=str, required=False, help="Path to U-ViT checkpoint to convert."
)
parser.add_argument(
"--vae_checkpoint_path",
default=None,
type=str,
required=False,
help="Path to VAE checkpoint to convert.",
)
parser.add_argument(
"--pipeline_output_path",
default=None,
type=str,
required=True,
help="Path to save the output pipeline to.",
)
parser.add_argument(
"--config_type",
default="test",
type=str,
help=(
"Config type to use. Should be 'test' to create small models for testing or 'big' to convert a full"
" checkpoint."
),
)
parser.add_argument(
"--version",
default=0,
type=int,
help="The UniDiffuser model type to convert to. Should be 0 for UniDiffuser-v0 and 1 for UniDiffuser-v1.",
)
parser.add_argument(
"--safe_serialization",
action="store_true",
help="Whether to use safetensors/safe seialization when saving the pipeline.",
)
args = parser.parse_args()
# Convert the VAE model.
if args.vae_checkpoint_path is not None:
vae_config = create_vae_diffusers_config(args.config_type)
vae = AutoencoderKL(**vae_config)
vae = convert_vae_to_diffusers(args.vae_checkpoint_path, vae)
# Convert the U-ViT ("unet") model.
if args.uvit_checkpoint_path is not None:
unet_config = create_unidiffuser_unet_config(args.config_type, args.version)
unet = UniDiffuserModel(**unet_config)
unet = convert_uvit_to_diffusers(args.uvit_checkpoint_path, unet)
# Convert the caption decoder ("text_decoder") model.
if args.caption_decoder_checkpoint_path is not None:
text_decoder_config = create_text_decoder_config(args.config_type)
text_decoder = UniDiffuserTextDecoder(**text_decoder_config)
text_decoder = convert_caption_decoder_to_diffusers(args.caption_decoder_checkpoint_path, text_decoder)
# Scheduler is the same for both the test and big models.
scheduler_config = SCHEDULER_CONFIG
scheduler = DPMSolverMultistepScheduler(
beta_start=scheduler_config.beta_start,
beta_end=scheduler_config.beta_end,
beta_schedule=scheduler_config.beta_schedule,
solver_order=scheduler_config.solver_order,
)
if args.config_type == "test":
# Make a small random CLIPTextModel
torch.manual_seed(0)
clip_text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
text_encoder = CLIPTextModel(clip_text_encoder_config)
clip_tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
# Make a small random CLIPVisionModel and accompanying CLIPImageProcessor
torch.manual_seed(0)
clip_image_encoder_config = CLIPVisionConfig(
image_size=32,
patch_size=2,
num_channels=3,
hidden_size=32,
projection_dim=32,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
dropout=0.1,
attention_dropout=0.1,
initializer_range=0.02,
)
image_encoder = CLIPVisionModelWithProjection(clip_image_encoder_config)
image_processor = CLIPImageProcessor(crop_size=32, size=32)
# Note that the text_decoder should already have its token embeddings resized.
text_tokenizer = GPT2Tokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model")
eos = "<|EOS|>"
special_tokens_dict = {"eos_token": eos}
text_tokenizer.add_special_tokens(special_tokens_dict)
elif args.config_type == "big":
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
clip_tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
image_encoder = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-base-patch32")
image_processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32")
# Note that the text_decoder should already have its token embeddings resized.
text_tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
eos = "<|EOS|>"
special_tokens_dict = {"eos_token": eos}
text_tokenizer.add_special_tokens(special_tokens_dict)
else:
raise NotImplementedError(
f"Config type {args.config_type} is not implemented, currently only config types"
" 'test' and 'big' are available."
)
pipeline = UniDiffuserPipeline(
vae=vae,
text_encoder=text_encoder,
image_encoder=image_encoder,
clip_image_processor=image_processor,
clip_tokenizer=clip_tokenizer,
text_decoder=text_decoder,
text_tokenizer=text_tokenizer,
unet=unet,
scheduler=scheduler,
)
pipeline.save_pretrained(args.pipeline_output_path, safe_serialization=args.safe_serialization)
|