|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
import math |
|
import os |
|
import shutil |
|
import time |
|
from pathlib import Path |
|
|
|
import accelerate |
|
import numpy as np |
|
import PIL |
|
import PIL.Image |
|
import timm |
|
import torch |
|
import torch.nn.functional as F |
|
from accelerate import Accelerator |
|
from accelerate.logging import get_logger |
|
from accelerate.utils import DistributedType, ProjectConfiguration, set_seed |
|
from datasets import load_dataset |
|
from discriminator import Discriminator |
|
from huggingface_hub import create_repo |
|
from packaging import version |
|
from PIL import Image |
|
from timm.data import resolve_data_config |
|
from timm.data.transforms_factory import create_transform |
|
from torchvision import transforms |
|
from tqdm import tqdm |
|
|
|
from diffusers import VQModel |
|
from diffusers.optimization import get_scheduler |
|
from diffusers.training_utils import EMAModel |
|
from diffusers.utils import check_min_version, is_wandb_available |
|
|
|
|
|
if is_wandb_available(): |
|
import wandb |
|
|
|
|
|
check_min_version("0.27.0.dev0") |
|
|
|
logger = get_logger(__name__, log_level="INFO") |
|
|
|
|
|
class AverageMeter(object): |
|
"""Computes and stores the average and current value""" |
|
|
|
def __init__(self): |
|
self.reset() |
|
|
|
def reset(self): |
|
self.val = 0 |
|
self.avg = 0 |
|
self.sum = 0 |
|
self.count = 0 |
|
|
|
def update(self, val, n=1): |
|
self.val = val |
|
self.sum += val * n |
|
self.count += n |
|
self.avg = self.sum / self.count |
|
|
|
|
|
def _map_layer_to_idx(backbone, layers, offset=0): |
|
"""Maps set of layer names to indices of model. Ported from anomalib |
|
|
|
Returns: |
|
Feature map extracted from the CNN |
|
""" |
|
idx = [] |
|
features = timm.create_model( |
|
backbone, |
|
pretrained=False, |
|
features_only=False, |
|
exportable=True, |
|
) |
|
for i in layers: |
|
try: |
|
idx.append(list(dict(features.named_children()).keys()).index(i) - offset) |
|
except ValueError: |
|
raise ValueError( |
|
f"Layer {i} not found in model {backbone}. Select layer from {list(dict(features.named_children()).keys())}. The network architecture is {features}" |
|
) |
|
return idx |
|
|
|
|
|
def get_perceptual_loss(pixel_values, fmap, timm_model, timm_model_resolution, timm_model_normalization): |
|
img_timm_model_input = timm_model_normalization(F.interpolate(pixel_values, timm_model_resolution)) |
|
fmap_timm_model_input = timm_model_normalization(F.interpolate(fmap, timm_model_resolution)) |
|
|
|
if pixel_values.shape[1] == 1: |
|
|
|
img_timm_model_input, fmap_timm_model_input = ( |
|
t.repeat(1, 3, 1, 1) for t in (img_timm_model_input, fmap_timm_model_input) |
|
) |
|
|
|
img_timm_model_feats = timm_model(img_timm_model_input) |
|
recon_timm_model_feats = timm_model(fmap_timm_model_input) |
|
perceptual_loss = F.mse_loss(img_timm_model_feats[0], recon_timm_model_feats[0]) |
|
for i in range(1, len(img_timm_model_feats)): |
|
perceptual_loss += F.mse_loss(img_timm_model_feats[i], recon_timm_model_feats[i]) |
|
perceptual_loss /= len(img_timm_model_feats) |
|
return perceptual_loss |
|
|
|
|
|
def grad_layer_wrt_loss(loss, layer): |
|
return torch.autograd.grad( |
|
outputs=loss, |
|
inputs=layer, |
|
grad_outputs=torch.ones_like(loss), |
|
retain_graph=True, |
|
)[0].detach() |
|
|
|
|
|
def gradient_penalty(images, output, weight=10): |
|
gradients = torch.autograd.grad( |
|
outputs=output, |
|
inputs=images, |
|
grad_outputs=torch.ones(output.size(), device=images.device), |
|
create_graph=True, |
|
retain_graph=True, |
|
only_inputs=True, |
|
)[0] |
|
bsz = gradients.shape[0] |
|
gradients = torch.reshape(gradients, (bsz, -1)) |
|
return weight * ((gradients.norm(2, dim=1) - 1) ** 2).mean() |
|
|
|
|
|
@torch.no_grad() |
|
def log_validation(model, args, validation_transform, accelerator, global_step): |
|
logger.info("Generating images...") |
|
dtype = torch.float32 |
|
if accelerator.mixed_precision == "fp16": |
|
dtype = torch.float16 |
|
elif accelerator.mixed_precision == "bf16": |
|
dtype = torch.bfloat16 |
|
original_images = [] |
|
for image_path in args.validation_images: |
|
image = PIL.Image.open(image_path) |
|
if not image.mode == "RGB": |
|
image = image.convert("RGB") |
|
image = validation_transform(image).to(accelerator.device, dtype=dtype) |
|
original_images.append(image[None]) |
|
|
|
model.eval() |
|
images = [] |
|
for original_image in original_images: |
|
image = accelerator.unwrap_model(model)(original_image).sample |
|
images.append(image) |
|
model.train() |
|
original_images = torch.cat(original_images, dim=0) |
|
images = torch.cat(images, dim=0) |
|
|
|
|
|
images = torch.clamp(images, 0.0, 1.0) |
|
original_images = torch.clamp(original_images, 0.0, 1.0) |
|
images *= 255.0 |
|
original_images *= 255.0 |
|
images = images.permute(0, 2, 3, 1).cpu().numpy().astype(np.uint8) |
|
original_images = original_images.permute(0, 2, 3, 1).cpu().numpy().astype(np.uint8) |
|
images = np.concatenate([original_images, images], axis=2) |
|
images = [Image.fromarray(image) for image in images] |
|
|
|
|
|
for tracker in accelerator.trackers: |
|
if tracker.name == "tensorboard": |
|
np_images = np.stack([np.asarray(img) for img in images]) |
|
tracker.writer.add_images("validation", np_images, global_step, dataformats="NHWC") |
|
if tracker.name == "wandb": |
|
tracker.log( |
|
{ |
|
"validation": [ |
|
wandb.Image(image, caption=f"{i}: Original, Generated") for i, image in enumerate(images) |
|
] |
|
}, |
|
step=global_step, |
|
) |
|
torch.cuda.empty_cache() |
|
return images |
|
|
|
|
|
def log_grad_norm(model, accelerator, global_step): |
|
for name, param in model.named_parameters(): |
|
if param.grad is not None: |
|
grads = param.grad.detach().data |
|
grad_norm = (grads.norm(p=2) / grads.numel()).item() |
|
accelerator.log({"grad_norm/" + name: grad_norm}, step=global_step) |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description="Simple example of a training script.") |
|
parser.add_argument( |
|
"--log_grad_norm_steps", |
|
type=int, |
|
default=500, |
|
help=("Print logs of gradient norms every X steps."), |
|
) |
|
parser.add_argument( |
|
"--log_steps", |
|
type=int, |
|
default=50, |
|
help=("Print logs every X steps."), |
|
) |
|
parser.add_argument( |
|
"--validation_steps", |
|
type=int, |
|
default=100, |
|
help=( |
|
"Run validation every X steps. Validation consists of running reconstruction on images in" |
|
" `args.validation_images` and logging the reconstructed images." |
|
), |
|
) |
|
parser.add_argument( |
|
"--vae_loss", |
|
type=str, |
|
default="l2", |
|
help="The loss function for vae reconstruction loss.", |
|
) |
|
parser.add_argument( |
|
"--timm_model_offset", |
|
type=int, |
|
default=0, |
|
help="Offset of timm layers to indices.", |
|
) |
|
parser.add_argument( |
|
"--timm_model_layers", |
|
type=str, |
|
default="head", |
|
help="The layers to get output from in the timm model.", |
|
) |
|
parser.add_argument( |
|
"--timm_model_backend", |
|
type=str, |
|
default="vgg19", |
|
help="Timm model used to get the lpips loss", |
|
) |
|
parser.add_argument( |
|
"--pretrained_model_name_or_path", |
|
type=str, |
|
default=None, |
|
help="Path to pretrained model or model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--model_config_name_or_path", |
|
type=str, |
|
default=None, |
|
help="The config of the Vq model to train, leave as None to use standard Vq model configuration.", |
|
) |
|
parser.add_argument( |
|
"--discriminator_config_name_or_path", |
|
type=str, |
|
default=None, |
|
help="The config of the discriminator model to train, leave as None to use standard Vq model configuration.", |
|
) |
|
parser.add_argument( |
|
"--revision", |
|
type=str, |
|
default=None, |
|
required=False, |
|
help="Revision of pretrained model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--dataset_name", |
|
type=str, |
|
default=None, |
|
help=( |
|
"The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private," |
|
" dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," |
|
" or to a folder containing files that 🤗 Datasets can understand." |
|
), |
|
) |
|
parser.add_argument( |
|
"--dataset_config_name", |
|
type=str, |
|
default=None, |
|
help="The config of the Dataset, leave as None if there's only one config.", |
|
) |
|
parser.add_argument( |
|
"--train_data_dir", |
|
type=str, |
|
default=None, |
|
help=( |
|
"A folder containing the training data. Folder contents must follow the structure described in" |
|
" https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file" |
|
" must exist to provide the captions for the images. Ignored if `dataset_name` is specified." |
|
), |
|
) |
|
parser.add_argument( |
|
"--image_column", type=str, default="image", help="The column of the dataset containing an image." |
|
) |
|
parser.add_argument( |
|
"--max_train_samples", |
|
type=int, |
|
default=None, |
|
help=( |
|
"For debugging purposes or quicker training, truncate the number of training examples to this " |
|
"value if set." |
|
), |
|
) |
|
parser.add_argument( |
|
"--validation_images", |
|
type=str, |
|
default=None, |
|
nargs="+", |
|
help=("A set of validation images evaluated every `--validation_steps` and logged to `--report_to`."), |
|
) |
|
parser.add_argument( |
|
"--output_dir", |
|
type=str, |
|
default="vqgan-output", |
|
help="The output directory where the model predictions and checkpoints will be written.", |
|
) |
|
parser.add_argument( |
|
"--cache_dir", |
|
type=str, |
|
default=None, |
|
help="The directory where the downloaded models and datasets will be stored.", |
|
) |
|
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") |
|
parser.add_argument( |
|
"--resolution", |
|
type=int, |
|
default=512, |
|
help=( |
|
"The resolution for input images, all the images in the train/validation dataset will be resized to this" |
|
" resolution" |
|
), |
|
) |
|
parser.add_argument( |
|
"--center_crop", |
|
default=False, |
|
action="store_true", |
|
help=( |
|
"Whether to center crop the input images to the resolution. If not set, the images will be randomly" |
|
" cropped. The images will be resized to the resolution first before cropping." |
|
), |
|
) |
|
parser.add_argument( |
|
"--random_flip", |
|
action="store_true", |
|
help="whether to randomly flip images horizontally", |
|
) |
|
parser.add_argument( |
|
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader." |
|
) |
|
parser.add_argument("--num_train_epochs", type=int, default=100) |
|
parser.add_argument( |
|
"--max_train_steps", |
|
type=int, |
|
default=None, |
|
help="Total number of training steps to perform. If provided, overrides num_train_epochs.", |
|
) |
|
parser.add_argument( |
|
"--gradient_accumulation_steps", |
|
type=int, |
|
default=1, |
|
help="Number of updates steps to accumulate before performing a backward/update pass.", |
|
) |
|
parser.add_argument( |
|
"--gradient_checkpointing", |
|
action="store_true", |
|
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", |
|
) |
|
parser.add_argument( |
|
"--discr_learning_rate", |
|
type=float, |
|
default=1e-4, |
|
help="Initial learning rate (after the potential warmup period) to use.", |
|
) |
|
parser.add_argument( |
|
"--learning_rate", |
|
type=float, |
|
default=1e-4, |
|
help="Initial learning rate (after the potential warmup period) to use.", |
|
) |
|
parser.add_argument( |
|
"--scale_lr", |
|
action="store_true", |
|
default=False, |
|
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", |
|
) |
|
parser.add_argument( |
|
"--lr_scheduler", |
|
type=str, |
|
default="constant", |
|
help=( |
|
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' |
|
' "constant", "constant_with_warmup"]' |
|
), |
|
) |
|
parser.add_argument( |
|
"--discr_lr_scheduler", |
|
type=str, |
|
default="constant", |
|
help=( |
|
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' |
|
' "constant", "constant_with_warmup"]' |
|
), |
|
) |
|
parser.add_argument( |
|
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." |
|
) |
|
parser.add_argument( |
|
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." |
|
) |
|
parser.add_argument( |
|
"--allow_tf32", |
|
action="store_true", |
|
help=( |
|
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" |
|
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" |
|
), |
|
) |
|
parser.add_argument("--use_ema", action="store_true", help="Whether to use EMA model.") |
|
parser.add_argument( |
|
"--non_ema_revision", |
|
type=str, |
|
default=None, |
|
required=False, |
|
help=( |
|
"Revision of pretrained non-ema model identifier. Must be a branch, tag or git identifier of the local or" |
|
" remote repository specified with --pretrained_model_name_or_path." |
|
), |
|
) |
|
parser.add_argument( |
|
"--dataloader_num_workers", |
|
type=int, |
|
default=0, |
|
help=( |
|
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." |
|
), |
|
) |
|
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") |
|
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") |
|
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") |
|
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") |
|
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") |
|
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") |
|
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") |
|
parser.add_argument( |
|
"--prediction_type", |
|
type=str, |
|
default=None, |
|
help="The prediction_type that shall be used for training. Choose between 'epsilon' or 'v_prediction' or leave `None`. If left to `None` the default prediction type of the scheduler: `noise_scheduler.config.prediciton_type` is chosen.", |
|
) |
|
parser.add_argument( |
|
"--hub_model_id", |
|
type=str, |
|
default=None, |
|
help="The name of the repository to keep in sync with the local `output_dir`.", |
|
) |
|
parser.add_argument( |
|
"--logging_dir", |
|
type=str, |
|
default="logs", |
|
help=( |
|
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" |
|
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." |
|
), |
|
) |
|
parser.add_argument( |
|
"--mixed_precision", |
|
type=str, |
|
default=None, |
|
choices=["no", "fp16", "bf16"], |
|
help=( |
|
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" |
|
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" |
|
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." |
|
), |
|
) |
|
parser.add_argument( |
|
"--report_to", |
|
type=str, |
|
default="tensorboard", |
|
help=( |
|
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' |
|
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' |
|
), |
|
) |
|
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") |
|
parser.add_argument( |
|
"--checkpointing_steps", |
|
type=int, |
|
default=500, |
|
help=( |
|
"Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming" |
|
" training using `--resume_from_checkpoint`." |
|
), |
|
) |
|
parser.add_argument( |
|
"--checkpoints_total_limit", |
|
type=int, |
|
default=None, |
|
help=("Max number of checkpoints to store."), |
|
) |
|
parser.add_argument( |
|
"--resume_from_checkpoint", |
|
type=str, |
|
default=None, |
|
help=( |
|
"Whether training should be resumed from a previous checkpoint. Use a path saved by" |
|
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' |
|
), |
|
) |
|
parser.add_argument( |
|
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." |
|
) |
|
parser.add_argument( |
|
"--tracker_project_name", |
|
type=str, |
|
default="vqgan-training", |
|
help=( |
|
"The `project_name` argument passed to Accelerator.init_trackers for" |
|
" more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator" |
|
), |
|
) |
|
|
|
args = parser.parse_args() |
|
env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) |
|
if env_local_rank != -1 and env_local_rank != args.local_rank: |
|
args.local_rank = env_local_rank |
|
|
|
|
|
if args.dataset_name is None and args.train_data_dir is None: |
|
raise ValueError("Need either a dataset name or a training folder.") |
|
|
|
|
|
if args.non_ema_revision is None: |
|
args.non_ema_revision = args.revision |
|
|
|
return args |
|
|
|
|
|
def main(): |
|
|
|
|
|
|
|
args = parse_args() |
|
|
|
|
|
if args.allow_tf32: |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
torch.backends.cudnn.benchmark = True |
|
torch.backends.cudnn.deterministic = False |
|
|
|
logging_dir = os.path.join(args.output_dir, args.logging_dir) |
|
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) |
|
|
|
accelerator = Accelerator( |
|
gradient_accumulation_steps=args.gradient_accumulation_steps, |
|
mixed_precision=args.mixed_precision, |
|
log_with=args.report_to, |
|
project_config=accelerator_project_config, |
|
) |
|
|
|
if accelerator.distributed_type == DistributedType.DEEPSPEED: |
|
accelerator.state.deepspeed_plugin.deepspeed_config["train_micro_batch_size_per_gpu"] = args.train_batch_size |
|
|
|
|
|
|
|
|
|
|
|
if accelerator.is_main_process: |
|
tracker_config = dict(vars(args)) |
|
tracker_config.pop("validation_images") |
|
accelerator.init_trackers(args.tracker_project_name, tracker_config) |
|
|
|
|
|
if args.seed is not None: |
|
set_seed(args.seed) |
|
|
|
|
|
if accelerator.is_main_process: |
|
if args.output_dir is not None: |
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
|
if args.push_to_hub: |
|
create_repo( |
|
repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token |
|
).repo_id |
|
|
|
|
|
|
|
|
|
logger.info("Loading models and optimizer") |
|
|
|
if args.model_config_name_or_path is None and args.pretrained_model_name_or_path is None: |
|
|
|
model = VQModel( |
|
act_fn="silu", |
|
block_out_channels=[ |
|
128, |
|
256, |
|
512, |
|
], |
|
down_block_types=[ |
|
"DownEncoderBlock2D", |
|
"DownEncoderBlock2D", |
|
"DownEncoderBlock2D", |
|
], |
|
in_channels=3, |
|
latent_channels=4, |
|
layers_per_block=2, |
|
norm_num_groups=32, |
|
norm_type="spatial", |
|
num_vq_embeddings=16384, |
|
out_channels=3, |
|
sample_size=32, |
|
scaling_factor=0.18215, |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
vq_embed_dim=4, |
|
) |
|
elif args.pretrained_model_name_or_path is not None: |
|
model = VQModel.from_pretrained(args.pretrained_model_name_or_path) |
|
else: |
|
config = VQModel.load_config(args.model_config_name_or_path) |
|
model = VQModel.from_config(config) |
|
if args.use_ema: |
|
ema_model = EMAModel(model.parameters(), model_cls=VQModel, model_config=model.config) |
|
if args.discriminator_config_name_or_path is None: |
|
discriminator = Discriminator() |
|
else: |
|
config = Discriminator.load_config(args.discriminator_config_name_or_path) |
|
discriminator = Discriminator.from_config(config) |
|
|
|
idx = _map_layer_to_idx(args.timm_model_backend, args.timm_model_layers.split("|"), args.timm_model_offset) |
|
|
|
timm_model = timm.create_model( |
|
args.timm_model_backend, |
|
pretrained=True, |
|
features_only=True, |
|
exportable=True, |
|
out_indices=idx, |
|
) |
|
timm_model = timm_model.to(accelerator.device) |
|
timm_model.requires_grad = False |
|
timm_model.eval() |
|
timm_transform = create_transform(**resolve_data_config(timm_model.pretrained_cfg, model=timm_model)) |
|
try: |
|
|
|
timm_centercrop_transform = timm_transform.transforms[1] |
|
assert isinstance( |
|
timm_centercrop_transform, transforms.CenterCrop |
|
), f"Timm model {timm_model} is currently incompatible with this script. Try vgg19." |
|
timm_model_resolution = timm_centercrop_transform.size[0] |
|
|
|
timm_model_normalization = timm_transform.transforms[-1] |
|
assert isinstance( |
|
timm_model_normalization, transforms.Normalize |
|
), f"Timm model {timm_model} is currently incompatible with this script. Try vgg19." |
|
except AssertionError as e: |
|
raise NotImplementedError(e) |
|
|
|
if args.enable_xformers_memory_efficient_attention: |
|
model.enable_xformers_memory_efficient_attention() |
|
|
|
|
|
if version.parse(accelerate.__version__) >= version.parse("0.16.0"): |
|
|
|
def save_model_hook(models, weights, output_dir): |
|
if accelerator.is_main_process: |
|
if args.use_ema: |
|
ema_model.save_pretrained(os.path.join(output_dir, "vqmodel_ema")) |
|
vqmodel = models[0] |
|
discriminator = models[1] |
|
vqmodel.save_pretrained(os.path.join(output_dir, "vqmodel")) |
|
discriminator.save_pretrained(os.path.join(output_dir, "discriminator")) |
|
weights.pop() |
|
weights.pop() |
|
|
|
def load_model_hook(models, input_dir): |
|
if args.use_ema: |
|
load_model = EMAModel.from_pretrained(os.path.join(input_dir, "vqmodel_ema"), VQModel) |
|
ema_model.load_state_dict(load_model.state_dict()) |
|
ema_model.to(accelerator.device) |
|
del load_model |
|
discriminator = models.pop() |
|
load_model = Discriminator.from_pretrained(input_dir, subfolder="discriminator") |
|
discriminator.register_to_config(**load_model.config) |
|
discriminator.load_state_dict(load_model.state_dict()) |
|
del load_model |
|
vqmodel = models.pop() |
|
load_model = VQModel.from_pretrained(input_dir, subfolder="vqmodel") |
|
vqmodel.register_to_config(**load_model.config) |
|
vqmodel.load_state_dict(load_model.state_dict()) |
|
del load_model |
|
|
|
accelerator.register_save_state_pre_hook(save_model_hook) |
|
accelerator.register_load_state_pre_hook(load_model_hook) |
|
|
|
learning_rate = args.learning_rate |
|
if args.scale_lr: |
|
learning_rate = ( |
|
learning_rate * args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps |
|
) |
|
|
|
|
|
if args.use_8bit_adam: |
|
try: |
|
import bitsandbytes as bnb |
|
except ImportError: |
|
raise ImportError( |
|
"Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`" |
|
) |
|
|
|
optimizer_cls = bnb.optim.AdamW8bit |
|
else: |
|
optimizer_cls = torch.optim.AdamW |
|
|
|
optimizer = optimizer_cls( |
|
list(model.parameters()), |
|
lr=args.learning_rate, |
|
betas=(args.adam_beta1, args.adam_beta2), |
|
weight_decay=args.adam_weight_decay, |
|
eps=args.adam_epsilon, |
|
) |
|
discr_optimizer = optimizer_cls( |
|
list(discriminator.parameters()), |
|
lr=args.discr_learning_rate, |
|
betas=(args.adam_beta1, args.adam_beta2), |
|
weight_decay=args.adam_weight_decay, |
|
eps=args.adam_epsilon, |
|
) |
|
|
|
|
|
|
|
|
|
logger.info("Creating dataloaders and lr_scheduler") |
|
|
|
args.train_batch_size * accelerator.num_processes |
|
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps |
|
|
|
|
|
if args.dataset_name is not None: |
|
|
|
dataset = load_dataset( |
|
args.dataset_name, |
|
args.dataset_config_name, |
|
cache_dir=args.cache_dir, |
|
data_dir=args.train_data_dir, |
|
) |
|
else: |
|
data_files = {} |
|
if args.train_data_dir is not None: |
|
data_files["train"] = os.path.join(args.train_data_dir, "**") |
|
dataset = load_dataset( |
|
"imagefolder", |
|
data_files=data_files, |
|
cache_dir=args.cache_dir, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
column_names = dataset["train"].column_names |
|
|
|
|
|
assert args.image_column is not None |
|
image_column = args.image_column |
|
if image_column not in column_names: |
|
raise ValueError(f"--image_column' value '{args.image_column}' needs to be one of: {', '.join(column_names)}") |
|
|
|
train_transforms = transforms.Compose( |
|
[ |
|
transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR), |
|
transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution), |
|
transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x), |
|
transforms.ToTensor(), |
|
] |
|
) |
|
validation_transform = transforms.Compose( |
|
[ |
|
transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR), |
|
transforms.ToTensor(), |
|
] |
|
) |
|
|
|
def preprocess_train(examples): |
|
images = [image.convert("RGB") for image in examples[image_column]] |
|
examples["pixel_values"] = [train_transforms(image) for image in images] |
|
return examples |
|
|
|
with accelerator.main_process_first(): |
|
if args.max_train_samples is not None: |
|
dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples)) |
|
train_dataset = dataset["train"].with_transform(preprocess_train) |
|
|
|
def collate_fn(examples): |
|
pixel_values = torch.stack([example["pixel_values"] for example in examples]) |
|
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() |
|
return {"pixel_values": pixel_values} |
|
|
|
|
|
train_dataloader = torch.utils.data.DataLoader( |
|
train_dataset, |
|
shuffle=True, |
|
collate_fn=collate_fn, |
|
batch_size=args.train_batch_size, |
|
num_workers=args.dataloader_num_workers, |
|
) |
|
|
|
lr_scheduler = get_scheduler( |
|
args.lr_scheduler, |
|
optimizer=optimizer, |
|
num_training_steps=args.max_train_steps, |
|
num_warmup_steps=args.lr_warmup_steps, |
|
) |
|
discr_lr_scheduler = get_scheduler( |
|
args.discr_lr_scheduler, |
|
optimizer=discr_optimizer, |
|
num_training_steps=args.max_train_steps, |
|
num_warmup_steps=args.lr_warmup_steps, |
|
) |
|
|
|
|
|
logger.info("Preparing model, optimizer and dataloaders") |
|
|
|
model, discriminator, optimizer, discr_optimizer, lr_scheduler, discr_lr_scheduler = accelerator.prepare( |
|
model, discriminator, optimizer, discr_optimizer, lr_scheduler, discr_lr_scheduler |
|
) |
|
if args.use_ema: |
|
ema_model.to(accelerator.device) |
|
|
|
logger.info("***** Running training *****") |
|
logger.info(f" Num examples = {len(train_dataset)}") |
|
logger.info(f" Num Epochs = {args.num_train_epochs}") |
|
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") |
|
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") |
|
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") |
|
logger.info(f" Total optimization steps = {args.max_train_steps}") |
|
global_step = 0 |
|
first_epoch = 0 |
|
|
|
overrode_max_train_steps = False |
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
if args.max_train_steps is None: |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
overrode_max_train_steps = True |
|
if overrode_max_train_steps: |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
|
|
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) |
|
|
|
|
|
resume_from_checkpoint = args.resume_from_checkpoint |
|
if resume_from_checkpoint: |
|
if resume_from_checkpoint != "latest": |
|
path = resume_from_checkpoint |
|
else: |
|
|
|
dirs = os.listdir(args.output_dir) |
|
dirs = [d for d in dirs if d.startswith("checkpoint")] |
|
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) |
|
path = dirs[-1] if len(dirs) > 0 else None |
|
path = os.path.join(args.output_dir, path) |
|
|
|
if path is None: |
|
accelerator.print(f"Checkpoint '{resume_from_checkpoint}' does not exist. Starting a new training run.") |
|
resume_from_checkpoint = None |
|
else: |
|
accelerator.print(f"Resuming from checkpoint {path}") |
|
accelerator.load_state(path) |
|
accelerator.wait_for_everyone() |
|
global_step = int(os.path.basename(path).split("-")[1]) |
|
first_epoch = global_step // num_update_steps_per_epoch |
|
|
|
batch_time_m = AverageMeter() |
|
data_time_m = AverageMeter() |
|
end = time.time() |
|
progress_bar = tqdm( |
|
range(0, args.max_train_steps), |
|
initial=global_step, |
|
desc="Steps", |
|
|
|
disable=not accelerator.is_local_main_process, |
|
) |
|
|
|
|
|
avg_gen_loss, avg_discr_loss = None, None |
|
for epoch in range(first_epoch, args.num_train_epochs): |
|
model.train() |
|
discriminator.train() |
|
for i, batch in enumerate(train_dataloader): |
|
pixel_values = batch["pixel_values"] |
|
pixel_values = pixel_values.to(accelerator.device, non_blocking=True) |
|
data_time_m.update(time.time() - end) |
|
generator_step = ((i // args.gradient_accumulation_steps) % 2) == 0 |
|
|
|
|
|
|
|
|
|
if generator_step: |
|
optimizer.zero_grad(set_to_none=True) |
|
else: |
|
discr_optimizer.zero_grad(set_to_none=True) |
|
|
|
|
|
fmap, commit_loss = model(pixel_values, return_dict=False) |
|
|
|
if generator_step: |
|
with accelerator.accumulate(model): |
|
|
|
if args.vae_loss == "l2": |
|
loss = F.mse_loss(pixel_values, fmap) |
|
else: |
|
loss = F.l1_loss(pixel_values, fmap) |
|
|
|
perceptual_loss = get_perceptual_loss( |
|
pixel_values, |
|
fmap, |
|
timm_model, |
|
timm_model_resolution=timm_model_resolution, |
|
timm_model_normalization=timm_model_normalization, |
|
) |
|
|
|
gen_loss = -discriminator(fmap).mean() |
|
last_dec_layer = accelerator.unwrap_model(model).decoder.conv_out.weight |
|
norm_grad_wrt_perceptual_loss = grad_layer_wrt_loss(perceptual_loss, last_dec_layer).norm(p=2) |
|
norm_grad_wrt_gen_loss = grad_layer_wrt_loss(gen_loss, last_dec_layer).norm(p=2) |
|
|
|
adaptive_weight = norm_grad_wrt_perceptual_loss / norm_grad_wrt_gen_loss.clamp(min=1e-8) |
|
adaptive_weight = adaptive_weight.clamp(max=1e4) |
|
loss += commit_loss |
|
loss += perceptual_loss |
|
loss += adaptive_weight * gen_loss |
|
|
|
avg_gen_loss = accelerator.gather(loss.repeat(args.train_batch_size)).float().mean() |
|
accelerator.backward(loss) |
|
|
|
if args.max_grad_norm is not None and accelerator.sync_gradients: |
|
accelerator.clip_grad_norm_(model.parameters(), args.max_grad_norm) |
|
|
|
optimizer.step() |
|
lr_scheduler.step() |
|
|
|
if ( |
|
accelerator.sync_gradients |
|
and global_step % args.log_grad_norm_steps == 0 |
|
and accelerator.is_main_process |
|
): |
|
log_grad_norm(model, accelerator, global_step) |
|
else: |
|
|
|
with accelerator.accumulate(discriminator): |
|
fmap.detach_() |
|
pixel_values.requires_grad_() |
|
real = discriminator(pixel_values) |
|
fake = discriminator(fmap) |
|
loss = (F.relu(1 + fake) + F.relu(1 - real)).mean() |
|
gp = gradient_penalty(pixel_values, real) |
|
loss += gp |
|
avg_discr_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean() |
|
accelerator.backward(loss) |
|
|
|
if args.max_grad_norm is not None and accelerator.sync_gradients: |
|
accelerator.clip_grad_norm_(discriminator.parameters(), args.max_grad_norm) |
|
|
|
discr_optimizer.step() |
|
discr_lr_scheduler.step() |
|
if ( |
|
accelerator.sync_gradients |
|
and global_step % args.log_grad_norm_steps == 0 |
|
and accelerator.is_main_process |
|
): |
|
log_grad_norm(discriminator, accelerator, global_step) |
|
batch_time_m.update(time.time() - end) |
|
|
|
if accelerator.sync_gradients: |
|
global_step += 1 |
|
progress_bar.update(1) |
|
if args.use_ema: |
|
ema_model.step(model.parameters()) |
|
if accelerator.sync_gradients and not generator_step and accelerator.is_main_process: |
|
|
|
|
|
if global_step % args.log_steps == 0: |
|
samples_per_second_per_gpu = ( |
|
args.gradient_accumulation_steps * args.train_batch_size / batch_time_m.val |
|
) |
|
logs = { |
|
"step_discr_loss": avg_discr_loss.item(), |
|
"lr": lr_scheduler.get_last_lr()[0], |
|
"samples/sec/gpu": samples_per_second_per_gpu, |
|
"data_time": data_time_m.val, |
|
"batch_time": batch_time_m.val, |
|
} |
|
if avg_gen_loss is not None: |
|
logs["step_gen_loss"] = avg_gen_loss.item() |
|
accelerator.log(logs, step=global_step) |
|
|
|
|
|
batch_time_m.reset() |
|
data_time_m.reset() |
|
|
|
if global_step % args.checkpointing_steps == 0: |
|
if accelerator.is_main_process: |
|
|
|
if args.checkpoints_total_limit is not None: |
|
checkpoints = os.listdir(args.output_dir) |
|
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] |
|
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) |
|
|
|
|
|
if len(checkpoints) >= args.checkpoints_total_limit: |
|
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 |
|
removing_checkpoints = checkpoints[0:num_to_remove] |
|
|
|
logger.info( |
|
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" |
|
) |
|
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") |
|
|
|
for removing_checkpoint in removing_checkpoints: |
|
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) |
|
shutil.rmtree(removing_checkpoint) |
|
|
|
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") |
|
accelerator.save_state(save_path) |
|
logger.info(f"Saved state to {save_path}") |
|
|
|
|
|
if global_step % args.validation_steps == 0: |
|
if args.use_ema: |
|
|
|
ema_model.store(model.parameters()) |
|
ema_model.copy_to(model.parameters()) |
|
log_validation(model, args, validation_transform, accelerator, global_step) |
|
if args.use_ema: |
|
|
|
ema_model.restore(model.parameters()) |
|
end = time.time() |
|
|
|
if global_step >= args.max_train_steps: |
|
break |
|
|
|
|
|
accelerator.wait_for_everyone() |
|
|
|
|
|
if accelerator.is_main_process: |
|
model = accelerator.unwrap_model(model) |
|
discriminator = accelerator.unwrap_model(discriminator) |
|
if args.use_ema: |
|
ema_model.copy_to(model.parameters()) |
|
model.save_pretrained(os.path.join(args.output_dir, "vqmodel")) |
|
discriminator.save_pretrained(os.path.join(args.output_dir, "discriminator")) |
|
|
|
accelerator.end_training() |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|