File size: 43,476 Bytes
ef4d689 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import math
import os
import shutil
import time
from pathlib import Path
import accelerate
import numpy as np
import PIL
import PIL.Image
import timm
import torch
import torch.nn.functional as F
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import DistributedType, ProjectConfiguration, set_seed
from datasets import load_dataset
from discriminator import Discriminator
from huggingface_hub import create_repo
from packaging import version
from PIL import Image
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform
from torchvision import transforms
from tqdm import tqdm
from diffusers import VQModel
from diffusers.optimization import get_scheduler
from diffusers.training_utils import EMAModel
from diffusers.utils import check_min_version, is_wandb_available
if is_wandb_available():
import wandb
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.27.0.dev0")
logger = get_logger(__name__, log_level="INFO")
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def _map_layer_to_idx(backbone, layers, offset=0):
"""Maps set of layer names to indices of model. Ported from anomalib
Returns:
Feature map extracted from the CNN
"""
idx = []
features = timm.create_model(
backbone,
pretrained=False,
features_only=False,
exportable=True,
)
for i in layers:
try:
idx.append(list(dict(features.named_children()).keys()).index(i) - offset)
except ValueError:
raise ValueError(
f"Layer {i} not found in model {backbone}. Select layer from {list(dict(features.named_children()).keys())}. The network architecture is {features}"
)
return idx
def get_perceptual_loss(pixel_values, fmap, timm_model, timm_model_resolution, timm_model_normalization):
img_timm_model_input = timm_model_normalization(F.interpolate(pixel_values, timm_model_resolution))
fmap_timm_model_input = timm_model_normalization(F.interpolate(fmap, timm_model_resolution))
if pixel_values.shape[1] == 1:
# handle grayscale for timm_model
img_timm_model_input, fmap_timm_model_input = (
t.repeat(1, 3, 1, 1) for t in (img_timm_model_input, fmap_timm_model_input)
)
img_timm_model_feats = timm_model(img_timm_model_input)
recon_timm_model_feats = timm_model(fmap_timm_model_input)
perceptual_loss = F.mse_loss(img_timm_model_feats[0], recon_timm_model_feats[0])
for i in range(1, len(img_timm_model_feats)):
perceptual_loss += F.mse_loss(img_timm_model_feats[i], recon_timm_model_feats[i])
perceptual_loss /= len(img_timm_model_feats)
return perceptual_loss
def grad_layer_wrt_loss(loss, layer):
return torch.autograd.grad(
outputs=loss,
inputs=layer,
grad_outputs=torch.ones_like(loss),
retain_graph=True,
)[0].detach()
def gradient_penalty(images, output, weight=10):
gradients = torch.autograd.grad(
outputs=output,
inputs=images,
grad_outputs=torch.ones(output.size(), device=images.device),
create_graph=True,
retain_graph=True,
only_inputs=True,
)[0]
bsz = gradients.shape[0]
gradients = torch.reshape(gradients, (bsz, -1))
return weight * ((gradients.norm(2, dim=1) - 1) ** 2).mean()
@torch.no_grad()
def log_validation(model, args, validation_transform, accelerator, global_step):
logger.info("Generating images...")
dtype = torch.float32
if accelerator.mixed_precision == "fp16":
dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
dtype = torch.bfloat16
original_images = []
for image_path in args.validation_images:
image = PIL.Image.open(image_path)
if not image.mode == "RGB":
image = image.convert("RGB")
image = validation_transform(image).to(accelerator.device, dtype=dtype)
original_images.append(image[None])
# Generate images
model.eval()
images = []
for original_image in original_images:
image = accelerator.unwrap_model(model)(original_image).sample
images.append(image)
model.train()
original_images = torch.cat(original_images, dim=0)
images = torch.cat(images, dim=0)
# Convert to PIL images
images = torch.clamp(images, 0.0, 1.0)
original_images = torch.clamp(original_images, 0.0, 1.0)
images *= 255.0
original_images *= 255.0
images = images.permute(0, 2, 3, 1).cpu().numpy().astype(np.uint8)
original_images = original_images.permute(0, 2, 3, 1).cpu().numpy().astype(np.uint8)
images = np.concatenate([original_images, images], axis=2)
images = [Image.fromarray(image) for image in images]
# Log images
for tracker in accelerator.trackers:
if tracker.name == "tensorboard":
np_images = np.stack([np.asarray(img) for img in images])
tracker.writer.add_images("validation", np_images, global_step, dataformats="NHWC")
if tracker.name == "wandb":
tracker.log(
{
"validation": [
wandb.Image(image, caption=f"{i}: Original, Generated") for i, image in enumerate(images)
]
},
step=global_step,
)
torch.cuda.empty_cache()
return images
def log_grad_norm(model, accelerator, global_step):
for name, param in model.named_parameters():
if param.grad is not None:
grads = param.grad.detach().data
grad_norm = (grads.norm(p=2) / grads.numel()).item()
accelerator.log({"grad_norm/" + name: grad_norm}, step=global_step)
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--log_grad_norm_steps",
type=int,
default=500,
help=("Print logs of gradient norms every X steps."),
)
parser.add_argument(
"--log_steps",
type=int,
default=50,
help=("Print logs every X steps."),
)
parser.add_argument(
"--validation_steps",
type=int,
default=100,
help=(
"Run validation every X steps. Validation consists of running reconstruction on images in"
" `args.validation_images` and logging the reconstructed images."
),
)
parser.add_argument(
"--vae_loss",
type=str,
default="l2",
help="The loss function for vae reconstruction loss.",
)
parser.add_argument(
"--timm_model_offset",
type=int,
default=0,
help="Offset of timm layers to indices.",
)
parser.add_argument(
"--timm_model_layers",
type=str,
default="head",
help="The layers to get output from in the timm model.",
)
parser.add_argument(
"--timm_model_backend",
type=str,
default="vgg19",
help="Timm model used to get the lpips loss",
)
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--model_config_name_or_path",
type=str,
default=None,
help="The config of the Vq model to train, leave as None to use standard Vq model configuration.",
)
parser.add_argument(
"--discriminator_config_name_or_path",
type=str,
default=None,
help="The config of the discriminator model to train, leave as None to use standard Vq model configuration.",
)
parser.add_argument(
"--revision",
type=str,
default=None,
required=False,
help="Revision of pretrained model identifier from huggingface.co/models.",
)
parser.add_argument(
"--dataset_name",
type=str,
default=None,
help=(
"The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
" dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
" or to a folder containing files that 🤗 Datasets can understand."
),
)
parser.add_argument(
"--dataset_config_name",
type=str,
default=None,
help="The config of the Dataset, leave as None if there's only one config.",
)
parser.add_argument(
"--train_data_dir",
type=str,
default=None,
help=(
"A folder containing the training data. Folder contents must follow the structure described in"
" https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file"
" must exist to provide the captions for the images. Ignored if `dataset_name` is specified."
),
)
parser.add_argument(
"--image_column", type=str, default="image", help="The column of the dataset containing an image."
)
parser.add_argument(
"--max_train_samples",
type=int,
default=None,
help=(
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
),
)
parser.add_argument(
"--validation_images",
type=str,
default=None,
nargs="+",
help=("A set of validation images evaluated every `--validation_steps` and logged to `--report_to`."),
)
parser.add_argument(
"--output_dir",
type=str,
default="vqgan-output",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument(
"--cache_dir",
type=str,
default=None,
help="The directory where the downloaded models and datasets will be stored.",
)
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument(
"--resolution",
type=int,
default=512,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--center_crop",
default=False,
action="store_true",
help=(
"Whether to center crop the input images to the resolution. If not set, the images will be randomly"
" cropped. The images will be resized to the resolution first before cropping."
),
)
parser.add_argument(
"--random_flip",
action="store_true",
help="whether to randomly flip images horizontally",
)
parser.add_argument(
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
)
parser.add_argument("--num_train_epochs", type=int, default=100)
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--gradient_checkpointing",
action="store_true",
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
)
parser.add_argument(
"--discr_learning_rate",
type=float,
default=1e-4,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=1e-4,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--scale_lr",
action="store_true",
default=False,
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'
),
)
parser.add_argument(
"--discr_lr_scheduler",
type=str,
default="constant",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'
),
)
parser.add_argument(
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument(
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
)
parser.add_argument(
"--allow_tf32",
action="store_true",
help=(
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
),
)
parser.add_argument("--use_ema", action="store_true", help="Whether to use EMA model.")
parser.add_argument(
"--non_ema_revision",
type=str,
default=None,
required=False,
help=(
"Revision of pretrained non-ema model identifier. Must be a branch, tag or git identifier of the local or"
" remote repository specified with --pretrained_model_name_or_path."
),
)
parser.add_argument(
"--dataloader_num_workers",
type=int,
default=0,
help=(
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
),
)
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--prediction_type",
type=str,
default=None,
help="The prediction_type that shall be used for training. Choose between 'epsilon' or 'v_prediction' or leave `None`. If left to `None` the default prediction type of the scheduler: `noise_scheduler.config.prediciton_type` is chosen.",
)
parser.add_argument(
"--hub_model_id",
type=str,
default=None,
help="The name of the repository to keep in sync with the local `output_dir`.",
)
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default=None,
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
),
)
parser.add_argument(
"--report_to",
type=str,
default="tensorboard",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
),
)
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
parser.add_argument(
"--checkpointing_steps",
type=int,
default=500,
help=(
"Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming"
" training using `--resume_from_checkpoint`."
),
)
parser.add_argument(
"--checkpoints_total_limit",
type=int,
default=None,
help=("Max number of checkpoints to store."),
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help=(
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
),
)
parser.add_argument(
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
)
parser.add_argument(
"--tracker_project_name",
type=str,
default="vqgan-training",
help=(
"The `project_name` argument passed to Accelerator.init_trackers for"
" more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator"
),
)
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
# Sanity checks
if args.dataset_name is None and args.train_data_dir is None:
raise ValueError("Need either a dataset name or a training folder.")
# default to using the same revision for the non-ema model if not specified
if args.non_ema_revision is None:
args.non_ema_revision = args.revision
return args
def main():
#########################
# SETUP Accelerator #
#########################
args = parse_args()
# Enable TF32 on Ampere GPUs
if args.allow_tf32:
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = False
logging_dir = os.path.join(args.output_dir, args.logging_dir)
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with=args.report_to,
project_config=accelerator_project_config,
)
if accelerator.distributed_type == DistributedType.DEEPSPEED:
accelerator.state.deepspeed_plugin.deepspeed_config["train_micro_batch_size_per_gpu"] = args.train_batch_size
#####################################
# SETUP LOGGING, SEED and CONFIG #
#####################################
if accelerator.is_main_process:
tracker_config = dict(vars(args))
tracker_config.pop("validation_images")
accelerator.init_trackers(args.tracker_project_name, tracker_config)
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Handle the repository creation
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
if args.push_to_hub:
create_repo(
repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
).repo_id
#########################
# MODELS and OPTIMIZER #
#########################
logger.info("Loading models and optimizer")
if args.model_config_name_or_path is None and args.pretrained_model_name_or_path is None:
# Taken from config of movq at kandinsky-community/kandinsky-2-2-decoder but without the attention layers
model = VQModel(
act_fn="silu",
block_out_channels=[
128,
256,
512,
],
down_block_types=[
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
],
in_channels=3,
latent_channels=4,
layers_per_block=2,
norm_num_groups=32,
norm_type="spatial",
num_vq_embeddings=16384,
out_channels=3,
sample_size=32,
scaling_factor=0.18215,
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
vq_embed_dim=4,
)
elif args.pretrained_model_name_or_path is not None:
model = VQModel.from_pretrained(args.pretrained_model_name_or_path)
else:
config = VQModel.load_config(args.model_config_name_or_path)
model = VQModel.from_config(config)
if args.use_ema:
ema_model = EMAModel(model.parameters(), model_cls=VQModel, model_config=model.config)
if args.discriminator_config_name_or_path is None:
discriminator = Discriminator()
else:
config = Discriminator.load_config(args.discriminator_config_name_or_path)
discriminator = Discriminator.from_config(config)
idx = _map_layer_to_idx(args.timm_model_backend, args.timm_model_layers.split("|"), args.timm_model_offset)
timm_model = timm.create_model(
args.timm_model_backend,
pretrained=True,
features_only=True,
exportable=True,
out_indices=idx,
)
timm_model = timm_model.to(accelerator.device)
timm_model.requires_grad = False
timm_model.eval()
timm_transform = create_transform(**resolve_data_config(timm_model.pretrained_cfg, model=timm_model))
try:
# Gets the resolution of the timm transformation after centercrop
timm_centercrop_transform = timm_transform.transforms[1]
assert isinstance(
timm_centercrop_transform, transforms.CenterCrop
), f"Timm model {timm_model} is currently incompatible with this script. Try vgg19."
timm_model_resolution = timm_centercrop_transform.size[0]
# Gets final normalization
timm_model_normalization = timm_transform.transforms[-1]
assert isinstance(
timm_model_normalization, transforms.Normalize
), f"Timm model {timm_model} is currently incompatible with this script. Try vgg19."
except AssertionError as e:
raise NotImplementedError(e)
# Enable flash attention if asked
if args.enable_xformers_memory_efficient_attention:
model.enable_xformers_memory_efficient_attention()
# `accelerate` 0.16.0 will have better support for customized saving
if version.parse(accelerate.__version__) >= version.parse("0.16.0"):
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
def save_model_hook(models, weights, output_dir):
if accelerator.is_main_process:
if args.use_ema:
ema_model.save_pretrained(os.path.join(output_dir, "vqmodel_ema"))
vqmodel = models[0]
discriminator = models[1]
vqmodel.save_pretrained(os.path.join(output_dir, "vqmodel"))
discriminator.save_pretrained(os.path.join(output_dir, "discriminator"))
weights.pop()
weights.pop()
def load_model_hook(models, input_dir):
if args.use_ema:
load_model = EMAModel.from_pretrained(os.path.join(input_dir, "vqmodel_ema"), VQModel)
ema_model.load_state_dict(load_model.state_dict())
ema_model.to(accelerator.device)
del load_model
discriminator = models.pop()
load_model = Discriminator.from_pretrained(input_dir, subfolder="discriminator")
discriminator.register_to_config(**load_model.config)
discriminator.load_state_dict(load_model.state_dict())
del load_model
vqmodel = models.pop()
load_model = VQModel.from_pretrained(input_dir, subfolder="vqmodel")
vqmodel.register_to_config(**load_model.config)
vqmodel.load_state_dict(load_model.state_dict())
del load_model
accelerator.register_save_state_pre_hook(save_model_hook)
accelerator.register_load_state_pre_hook(load_model_hook)
learning_rate = args.learning_rate
if args.scale_lr:
learning_rate = (
learning_rate * args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
)
# Initialize the optimizer
if args.use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError(
"Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`"
)
optimizer_cls = bnb.optim.AdamW8bit
else:
optimizer_cls = torch.optim.AdamW
optimizer = optimizer_cls(
list(model.parameters()),
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
discr_optimizer = optimizer_cls(
list(discriminator.parameters()),
lr=args.discr_learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
##################################
# DATLOADER and LR-SCHEDULER #
#################################
logger.info("Creating dataloaders and lr_scheduler")
args.train_batch_size * accelerator.num_processes
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
# DataLoaders creation:
if args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
dataset = load_dataset(
args.dataset_name,
args.dataset_config_name,
cache_dir=args.cache_dir,
data_dir=args.train_data_dir,
)
else:
data_files = {}
if args.train_data_dir is not None:
data_files["train"] = os.path.join(args.train_data_dir, "**")
dataset = load_dataset(
"imagefolder",
data_files=data_files,
cache_dir=args.cache_dir,
)
# See more about loading custom images at
# https://huggingface.co/docs/datasets/v2.4.0/en/image_load#imagefolder
# Preprocessing the datasets.
# We need to tokenize inputs and targets.
column_names = dataset["train"].column_names
# 6. Get the column names for input/target.
assert args.image_column is not None
image_column = args.image_column
if image_column not in column_names:
raise ValueError(f"--image_column' value '{args.image_column}' needs to be one of: {', '.join(column_names)}")
# Preprocessing the datasets.
train_transforms = transforms.Compose(
[
transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR),
transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution),
transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x),
transforms.ToTensor(),
]
)
validation_transform = transforms.Compose(
[
transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR),
transforms.ToTensor(),
]
)
def preprocess_train(examples):
images = [image.convert("RGB") for image in examples[image_column]]
examples["pixel_values"] = [train_transforms(image) for image in images]
return examples
with accelerator.main_process_first():
if args.max_train_samples is not None:
dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples))
train_dataset = dataset["train"].with_transform(preprocess_train)
def collate_fn(examples):
pixel_values = torch.stack([example["pixel_values"] for example in examples])
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
return {"pixel_values": pixel_values}
# DataLoaders creation:
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
shuffle=True,
collate_fn=collate_fn,
batch_size=args.train_batch_size,
num_workers=args.dataloader_num_workers,
)
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_training_steps=args.max_train_steps,
num_warmup_steps=args.lr_warmup_steps,
)
discr_lr_scheduler = get_scheduler(
args.discr_lr_scheduler,
optimizer=discr_optimizer,
num_training_steps=args.max_train_steps,
num_warmup_steps=args.lr_warmup_steps,
)
# Prepare everything with accelerator
logger.info("Preparing model, optimizer and dataloaders")
# The dataloader are already aware of distributed training, so we don't need to prepare them.
model, discriminator, optimizer, discr_optimizer, lr_scheduler, discr_lr_scheduler = accelerator.prepare(
model, discriminator, optimizer, discr_optimizer, lr_scheduler, discr_lr_scheduler
)
if args.use_ema:
ema_model.to(accelerator.device)
# Train!
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
global_step = 0
first_epoch = 0
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# Potentially load in the weights and states from a previous save
resume_from_checkpoint = args.resume_from_checkpoint
if resume_from_checkpoint:
if resume_from_checkpoint != "latest":
path = resume_from_checkpoint
else:
# Get the most recent checkpoint
dirs = os.listdir(args.output_dir)
dirs = [d for d in dirs if d.startswith("checkpoint")]
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
path = dirs[-1] if len(dirs) > 0 else None
path = os.path.join(args.output_dir, path)
if path is None:
accelerator.print(f"Checkpoint '{resume_from_checkpoint}' does not exist. Starting a new training run.")
resume_from_checkpoint = None
else:
accelerator.print(f"Resuming from checkpoint {path}")
accelerator.load_state(path)
accelerator.wait_for_everyone()
global_step = int(os.path.basename(path).split("-")[1])
first_epoch = global_step // num_update_steps_per_epoch
batch_time_m = AverageMeter()
data_time_m = AverageMeter()
end = time.time()
progress_bar = tqdm(
range(0, args.max_train_steps),
initial=global_step,
desc="Steps",
# Only show the progress bar once on each machine.
disable=not accelerator.is_local_main_process,
)
# As stated above, we are not doing epoch based training here, but just using this for book keeping and being able to
# reuse the same training loop with other datasets/loaders.
avg_gen_loss, avg_discr_loss = None, None
for epoch in range(first_epoch, args.num_train_epochs):
model.train()
discriminator.train()
for i, batch in enumerate(train_dataloader):
pixel_values = batch["pixel_values"]
pixel_values = pixel_values.to(accelerator.device, non_blocking=True)
data_time_m.update(time.time() - end)
generator_step = ((i // args.gradient_accumulation_steps) % 2) == 0
# Train Step
# The behavior of accelerator.accumulate is to
# 1. Check if gradients are synced(reached gradient-accumulation_steps)
# 2. If so sync gradients by stopping the not syncing process
if generator_step:
optimizer.zero_grad(set_to_none=True)
else:
discr_optimizer.zero_grad(set_to_none=True)
# encode images to the latent space and get the commit loss from vq tokenization
# Return commit loss
fmap, commit_loss = model(pixel_values, return_dict=False)
if generator_step:
with accelerator.accumulate(model):
# reconstruction loss. Pixel level differences between input vs output
if args.vae_loss == "l2":
loss = F.mse_loss(pixel_values, fmap)
else:
loss = F.l1_loss(pixel_values, fmap)
# perceptual loss. The high level feature mean squared error loss
perceptual_loss = get_perceptual_loss(
pixel_values,
fmap,
timm_model,
timm_model_resolution=timm_model_resolution,
timm_model_normalization=timm_model_normalization,
)
# generator loss
gen_loss = -discriminator(fmap).mean()
last_dec_layer = accelerator.unwrap_model(model).decoder.conv_out.weight
norm_grad_wrt_perceptual_loss = grad_layer_wrt_loss(perceptual_loss, last_dec_layer).norm(p=2)
norm_grad_wrt_gen_loss = grad_layer_wrt_loss(gen_loss, last_dec_layer).norm(p=2)
adaptive_weight = norm_grad_wrt_perceptual_loss / norm_grad_wrt_gen_loss.clamp(min=1e-8)
adaptive_weight = adaptive_weight.clamp(max=1e4)
loss += commit_loss
loss += perceptual_loss
loss += adaptive_weight * gen_loss
# Gather the losses across all processes for logging (if we use distributed training).
avg_gen_loss = accelerator.gather(loss.repeat(args.train_batch_size)).float().mean()
accelerator.backward(loss)
if args.max_grad_norm is not None and accelerator.sync_gradients:
accelerator.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
# log gradient norm before zeroing it
if (
accelerator.sync_gradients
and global_step % args.log_grad_norm_steps == 0
and accelerator.is_main_process
):
log_grad_norm(model, accelerator, global_step)
else:
# Return discriminator loss
with accelerator.accumulate(discriminator):
fmap.detach_()
pixel_values.requires_grad_()
real = discriminator(pixel_values)
fake = discriminator(fmap)
loss = (F.relu(1 + fake) + F.relu(1 - real)).mean()
gp = gradient_penalty(pixel_values, real)
loss += gp
avg_discr_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean()
accelerator.backward(loss)
if args.max_grad_norm is not None and accelerator.sync_gradients:
accelerator.clip_grad_norm_(discriminator.parameters(), args.max_grad_norm)
discr_optimizer.step()
discr_lr_scheduler.step()
if (
accelerator.sync_gradients
and global_step % args.log_grad_norm_steps == 0
and accelerator.is_main_process
):
log_grad_norm(discriminator, accelerator, global_step)
batch_time_m.update(time.time() - end)
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
global_step += 1
progress_bar.update(1)
if args.use_ema:
ema_model.step(model.parameters())
if accelerator.sync_gradients and not generator_step and accelerator.is_main_process:
# wait for both generator and discriminator to settle
# Log metrics
if global_step % args.log_steps == 0:
samples_per_second_per_gpu = (
args.gradient_accumulation_steps * args.train_batch_size / batch_time_m.val
)
logs = {
"step_discr_loss": avg_discr_loss.item(),
"lr": lr_scheduler.get_last_lr()[0],
"samples/sec/gpu": samples_per_second_per_gpu,
"data_time": data_time_m.val,
"batch_time": batch_time_m.val,
}
if avg_gen_loss is not None:
logs["step_gen_loss"] = avg_gen_loss.item()
accelerator.log(logs, step=global_step)
# resetting batch / data time meters per log window
batch_time_m.reset()
data_time_m.reset()
# Save model checkpoint
if global_step % args.checkpointing_steps == 0:
if accelerator.is_main_process:
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
if args.checkpoints_total_limit is not None:
checkpoints = os.listdir(args.output_dir)
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))
# before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
if len(checkpoints) >= args.checkpoints_total_limit:
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
removing_checkpoints = checkpoints[0:num_to_remove]
logger.info(
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
)
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")
for removing_checkpoint in removing_checkpoints:
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
shutil.rmtree(removing_checkpoint)
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
accelerator.save_state(save_path)
logger.info(f"Saved state to {save_path}")
# Generate images
if global_step % args.validation_steps == 0:
if args.use_ema:
# Store the VQGAN parameters temporarily and load the EMA parameters to perform inference.
ema_model.store(model.parameters())
ema_model.copy_to(model.parameters())
log_validation(model, args, validation_transform, accelerator, global_step)
if args.use_ema:
# Switch back to the original VQGAN parameters.
ema_model.restore(model.parameters())
end = time.time()
# Stop training if max steps is reached
if global_step >= args.max_train_steps:
break
# End for
accelerator.wait_for_everyone()
# Save the final trained checkpoint
if accelerator.is_main_process:
model = accelerator.unwrap_model(model)
discriminator = accelerator.unwrap_model(discriminator)
if args.use_ema:
ema_model.copy_to(model.parameters())
model.save_pretrained(os.path.join(args.output_dir, "vqmodel"))
discriminator.save_pretrained(os.path.join(args.output_dir, "discriminator"))
accelerator.end_training()
if __name__ == "__main__":
main()
|