Diffusersμμμ PyTorch 2.0 κ°μν μ§μ
0.13.0
λ²μ λΆν° Diffusersλ PyTorch 2.0μμμ μ΅μ μ΅μ νλ₯Ό μ§μν©λλ€. μ΄λ λ€μμ ν¬ν¨λ©λλ€.
- momory-efficient attentionμ μ¬μ©ν κ°μνλ νΈλμ€ν¬λ¨Έ μ§μ -
xformers
κ°μ μΆκ°μ μΈ dependencies νμ μμ - μΆκ° μ±λ₯ ν₯μμ μν κ°λ³ λͺ¨λΈμ λν μ»΄νμΌ κΈ°λ₯ torch.compile μ§μ
μ€μΉ
κ°μνλ μ΄ν
μ
ꡬνκ³Ό λ° torch.compile()
μ μ¬μ©νκΈ° μν΄, pipμμ μ΅μ λ²μ μ PyTorch 2.0μ μ€μΉλμ΄ μκ³ diffusers 0.13.0. λ²μ μ΄μμΈμ§ νμΈνμΈμ. μλ μ€λͺ
λ λ°μ κ°μ΄, PyTorch 2.0μ΄ νμ±νλμ΄ μμ λ diffusersλ μ΅μ νλ μ΄ν
μ
νλ‘μΈμ(AttnProcessor2_0
)λ₯Ό μ¬μ©ν©λλ€.
pip install --upgrade torch diffusers
κ°μνλ νΈλμ€ν¬λ¨Έμ torch.compile
μ¬μ©νκΈ°.
κ°μνλ νΈλμ€ν¬λ¨Έ ꡬν
PyTorch 2.0μλ
torch.nn.functional.scaled_dot_product_attention
ν¨μλ₯Ό ν΅ν΄ μ΅μ νλ memory-efficient attentionμ ꡬνμ΄ ν¬ν¨λμ΄ μμ΅λλ€. μ΄λ μ λ ₯ λ° GPU μ νμ λ°λΌ μ¬λ¬ μ΅μ νλ₯Ό μλμΌλ‘ νμ±νν©λλ€. μ΄λ xFormersμmemory_efficient_attention
κ³Ό μ μ¬νμ§λ§ κΈ°λ³Έμ μΌλ‘ PyTorchμ λ΄μ₯λμ΄ μμ΅λλ€.μ΄λ¬ν μ΅μ νλ PyTorch 2.0μ΄ μ€μΉλμ΄ μκ³
torch.nn.functional.scaled_dot_product_attention
μ μ¬μ©ν μ μλ κ²½μ° Diffusersμμ κΈ°λ³Έμ μΌλ‘ νμ±νλ©λλ€. μ΄λ₯Ό μ¬μ©νλ €λ©΄torch 2.0
μ μ€μΉνκ³ νμ΄νλΌμΈμ μ¬μ©νκΈ°λ§ νλ©΄ λ©λλ€. μλ₯Ό λ€μ΄:import torch from diffusers import DiffusionPipeline pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16) pipe = pipe.to("cuda") prompt = "a photo of an astronaut riding a horse on mars" image = pipe(prompt).images[0]
μ΄λ₯Ό λͺ μμ μΌλ‘ νμ±ννλ €λ©΄(νμλ μλ) μλμ κ°μ΄ μνν μ μμ΅λλ€.
import torch from diffusers import DiffusionPipeline + from diffusers.models.attention_processor import AttnProcessor2_0 pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16).to("cuda") + pipe.unet.set_attn_processor(AttnProcessor2_0()) prompt = "a photo of an astronaut riding a horse on mars" image = pipe(prompt).images[0]
μ΄ μ€ν κ³Όμ μ
xFormers
λ§νΌ λΉ λ₯΄κ³ λ©λͺ¨λ¦¬μ μΌλ‘ ν¨μ¨μ μ΄μ΄μΌ ν©λλ€. μμΈν λ΄μ©μ λ²€μΉλ§ν¬μμ νμΈνμΈμ.νμ΄νλΌμΈμ λ³΄λ€ deterministicμΌλ‘ λ§λ€κ±°λ νμΈ νλλ λͺ¨λΈμ Core MLκ³Ό κ°μ λ€λ₯Έ νμμΌλ‘ λ³νν΄μΌ νλ κ²½μ° λ°λλΌ μ΄ν μ νλ‘μΈμ (
AttnProcessor
)λ‘ λλ릴 μ μμ΅λλ€. μΌλ° μ΄ν μ νλ‘μΈμλ₯Ό μ¬μ©νλ €λ©΄ [~diffusers.UNet2DConditionModel.set_default_attn_processor
] ν¨μλ₯Ό μ¬μ©ν μ μμ΅λλ€:import torch from diffusers import DiffusionPipeline from diffusers.models.attention_processor import AttnProcessor pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16).to("cuda") pipe.unet.set_default_attn_processor() prompt = "a photo of an astronaut riding a horse on mars" image = pipe(prompt).images[0]
torch.compile
μΆκ°μ μΈ μλ ν₯μμ μν΄ μλ‘μ΄
torch.compile
κΈ°λ₯μ μ¬μ©ν μ μμ΅λλ€. νμ΄νλΌμΈμ UNetμ μΌλ°μ μΌλ‘ κ³μ° λΉμ©μ΄ κ°μ₯ ν¬κΈ° λλ¬Έμ λλ¨Έμ§ νμ λͺ¨λΈ(ν μ€νΈ μΈμ½λμ VAE)μ κ·Έλλ‘ λκ³unet
μtorch.compile
λ‘ λνν©λλ€. μμΈν λ΄μ©κ³Ό λ€λ₯Έ μ΅μ μ torch μ»΄νμΌ λ¬Έμλ₯Ό μ°Έμ‘°νμΈμ.pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) images = pipe(prompt, num_inference_steps=steps, num_images_per_prompt=batch_size).images
GPU μ νμ λ°λΌ
compile()
μ κ°μνλ νΈλμ€ν¬λ¨Έ μ΅μ νλ₯Ό ν΅ν΄ **5% - 300%**μ _μΆκ° μ±λ₯ ν₯μ_μ μ»μ μ μμ΅λλ€. κ·Έλ¬λ μ»΄νμΌμ Ampere(A100, 3090), Ada(4090) λ° Hopper(H100)μ κ°μ μ΅μ GPU μν€ν μ²μμ λ λ§μ μ±λ₯ ν₯μμ κ°μ Έμ¬ μ μμμ μ°Έκ³ νμΈμ.μ»΄νμΌμ μλ£νλ λ° μ½κ°μ μκ°μ΄ 걸리λ―λ‘, νμ΄νλΌμΈμ ν λ² μ€λΉν λ€μ λμΌν μ νμ μΆλ‘ μμ μ μ¬λ¬ λ² μνν΄μΌ νλ μν©μ κ°μ₯ μ ν©ν©λλ€. λ€λ₯Έ μ΄λ―Έμ§ ν¬κΈ°μμ μ»΄νμΌλ νμ΄νλΌμΈμ νΈμΆνλ©΄ μκ°μ λΉμ©μ΄ λ§μ΄ λ€ μ μλ μ»΄νμΌ μμ μ΄ λ€μ νΈλ¦¬κ±°λ©λλ€.
λ²€μΉλ§ν¬
PyTorch 2.0μ ν¨μ¨μ μΈ μ΄ν
μ
ꡬνκ³Ό torch.compile
μ μ¬μ©νμ¬ κ°μ₯ λ§μ΄ μ¬μ©λλ 5κ°μ νμ΄νλΌμΈμ λν΄ λ€μν GPUμ λ°°μΉ ν¬κΈ°μ κ±Έμ³ ν¬κ΄μ μΈ λ²€μΉλ§ν¬λ₯Ό μννμ΅λλ€. μ¬κΈ°μλ torch.compile()
μ΄ μ΅μ μΌλ‘ νμ©λλλ‘ νλ diffusers 0.17.0.dev0
μ μ¬μ©νμ΅λλ€.
λ²€μΉλ§νΉ μ½λ
Stable Diffusion text-to-image
from diffusers import DiffusionPipeline
import torch
path = "runwayml/stable-diffusion-v1-5"
run_compile = True # Set True / False
pipe = DiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16)
pipe = pipe.to("cuda")
pipe.unet.to(memory_format=torch.channels_last)
if run_compile:
print("Run torch compile")
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
prompt = "ghibli style, a fantasy landscape with castles"
for _ in range(3):
images = pipe(prompt=prompt).images
Stable Diffusion image-to-image
from diffusers import StableDiffusionImg2ImgPipeline
import requests
import torch
from PIL import Image
from io import BytesIO
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
response = requests.get(url)
init_image = Image.open(BytesIO(response.content)).convert("RGB")
init_image = init_image.resize((512, 512))
path = "runwayml/stable-diffusion-v1-5"
run_compile = True # Set True / False
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(path, torch_dtype=torch.float16)
pipe = pipe.to("cuda")
pipe.unet.to(memory_format=torch.channels_last)
if run_compile:
print("Run torch compile")
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
prompt = "ghibli style, a fantasy landscape with castles"
for _ in range(3):
image = pipe(prompt=prompt, image=init_image).images[0]
Stable Diffusion - inpainting
from diffusers import StableDiffusionInpaintPipeline
import requests
import torch
from PIL import Image
from io import BytesIO
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
def download_image(url):
response = requests.get(url)
return Image.open(BytesIO(response.content)).convert("RGB")
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
init_image = download_image(img_url).resize((512, 512))
mask_image = download_image(mask_url).resize((512, 512))
path = "runwayml/stable-diffusion-inpainting"
run_compile = True # Set True / False
pipe = StableDiffusionInpaintPipeline.from_pretrained(path, torch_dtype=torch.float16)
pipe = pipe.to("cuda")
pipe.unet.to(memory_format=torch.channels_last)
if run_compile:
print("Run torch compile")
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
prompt = "ghibli style, a fantasy landscape with castles"
for _ in range(3):
image = pipe(prompt=prompt, image=init_image, mask_image=mask_image).images[0]
ControlNet
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
import requests
import torch
from PIL import Image
from io import BytesIO
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
response = requests.get(url)
init_image = Image.open(BytesIO(response.content)).convert("RGB")
init_image = init_image.resize((512, 512))
path = "runwayml/stable-diffusion-v1-5"
run_compile = True # Set True / False
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
path, controlnet=controlnet, torch_dtype=torch.float16
)
pipe = pipe.to("cuda")
pipe.unet.to(memory_format=torch.channels_last)
pipe.controlnet.to(memory_format=torch.channels_last)
if run_compile:
print("Run torch compile")
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
pipe.controlnet = torch.compile(pipe.controlnet, mode="reduce-overhead", fullgraph=True)
prompt = "ghibli style, a fantasy landscape with castles"
for _ in range(3):
image = pipe(prompt=prompt, image=init_image).images[0]
IF text-to-image + upscaling
from diffusers import DiffusionPipeline
import torch
run_compile = True # Set True / False
pipe = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-M-v1.0", variant="fp16", text_encoder=None, torch_dtype=torch.float16)
pipe.to("cuda")
pipe_2 = DiffusionPipeline.from_pretrained("DeepFloyd/IF-II-M-v1.0", variant="fp16", text_encoder=None, torch_dtype=torch.float16)
pipe_2.to("cuda")
pipe_3 = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-x4-upscaler", torch_dtype=torch.float16)
pipe_3.to("cuda")
pipe.unet.to(memory_format=torch.channels_last)
pipe_2.unet.to(memory_format=torch.channels_last)
pipe_3.unet.to(memory_format=torch.channels_last)
if run_compile:
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
pipe_2.unet = torch.compile(pipe_2.unet, mode="reduce-overhead", fullgraph=True)
pipe_3.unet = torch.compile(pipe_3.unet, mode="reduce-overhead", fullgraph=True)
prompt = "the blue hulk"
prompt_embeds = torch.randn((1, 2, 4096), dtype=torch.float16)
neg_prompt_embeds = torch.randn((1, 2, 4096), dtype=torch.float16)
for _ in range(3):
image = pipe(prompt_embeds=prompt_embeds, negative_prompt_embeds=neg_prompt_embeds, output_type="pt").images
image_2 = pipe_2(image=image, prompt_embeds=prompt_embeds, negative_prompt_embeds=neg_prompt_embeds, output_type="pt").images
image_3 = pipe_3(prompt=prompt, image=image, noise_level=100).images
PyTorch 2.0 λ° torch.compile()
λ‘ μ»μ μ μλ κ°λ₯ν μλ ν₯μμ λν΄, Stable Diffusion text-to-image pipelineμ λν μλμ μΈ μλ ν₯μμ 보μ¬μ£Όλ μ°¨νΈλ₯Ό 5κ°μ μλ‘ λ€λ₯Έ GPU μ νκ΅°(λ°°μΉ ν¬κΈ° 4)μ λν΄ λνλ
λλ€:
To give you an even better idea of how this speed-up holds for the other pipelines presented above, consider the following
plot that shows the benchmarking numbers from an A100 across three different batch sizes
(with PyTorch 2.0 nightly and torch.compile()
):
μ΄ μλ ν₯μμ΄ μμ μ μλ λ€λ₯Έ νμ΄νλΌμΈμ λν΄μλ μ΄λ»κ² μ μ§λλμ§ λ μ μ΄ν΄νκΈ° μν΄, μΈ κ°μ§μ λ€λ₯Έ λ°°μΉ ν¬κΈ°μ κ±Έμ³ A100μ λ²€μΉλ§νΉ(PyTorch 2.0 nightly λ° `torch.compile() μ¬μ©) μμΉλ₯Ό 보μ¬μ£Όλ μ°¨νΈλ₯Ό 보μ
λλ€:
(μ μ°¨νΈμ λ²€μΉλ§ν¬ λ©νΈλ¦μ **μ΄λΉ iteration μ(iterations/second)**μ λλ€)
κ·Έλ¬λ ν¬λͺ μ±μ μν΄ λͺ¨λ λ²€μΉλ§νΉ μμΉλ₯Ό 곡κ°ν©λλ€!
λ€μ νλ€μμλ, μ΄λΉ μ²λ¦¬λλ iteration μ μΈ‘λ©΄μμμ κ²°κ³Όλ₯Ό 보μ¬μ€λλ€.
A100 (batch size: 1)
Pipeline | torch 2.0 - no compile |
torch nightly - no compile |
torch 2.0 - compile |
torch nightly - compile |
---|---|---|---|---|
SD - txt2img | 21.66 | 23.13 | 44.03 | 49.74 |
SD - img2img | 21.81 | 22.40 | 43.92 | 46.32 |
SD - inpaint | 22.24 | 23.23 | 43.76 | 49.25 |
SD - controlnet | 15.02 | 15.82 | 32.13 | 36.08 |
IF | 20.21 / 13.84 / 24.00 |
20.12 / 13.70 / 24.03 |
β | 97.34 / 27.23 / 111.66 |
A100 (batch size: 4)
Pipeline | torch 2.0 - no compile |
torch nightly - no compile |
torch 2.0 - compile |
torch nightly - compile |
---|---|---|---|---|
SD - txt2img | 11.6 | 13.12 | 14.62 | 17.27 |
SD - img2img | 11.47 | 13.06 | 14.66 | 17.25 |
SD - inpaint | 11.67 | 13.31 | 14.88 | 17.48 |
SD - controlnet | 8.28 | 9.38 | 10.51 | 12.41 |
IF | 25.02 | 18.04 | β | 48.47 |
A100 (batch size: 16)
Pipeline | torch 2.0 - no compile |
torch nightly - no compile |
torch 2.0 - compile |
torch nightly - compile |
---|---|---|---|---|
SD - txt2img | 3.04 | 3.6 | 3.83 | 4.68 |
SD - img2img | 2.98 | 3.58 | 3.83 | 4.67 |
SD - inpaint | 3.04 | 3.66 | 3.9 | 4.76 |
SD - controlnet | 2.15 | 2.58 | 2.74 | 3.35 |
IF | 8.78 | 9.82 | β | 16.77 |
V100 (batch size: 1)
Pipeline | torch 2.0 - no compile |
torch nightly - no compile |
torch 2.0 - compile |
torch nightly - compile |
---|---|---|---|---|
SD - txt2img | 18.99 | 19.14 | 20.95 | 22.17 |
SD - img2img | 18.56 | 19.18 | 20.95 | 22.11 |
SD - inpaint | 19.14 | 19.06 | 21.08 | 22.20 |
SD - controlnet | 13.48 | 13.93 | 15.18 | 15.88 |
IF | 20.01 / 9.08 / 23.34 |
19.79 / 8.98 / 24.10 |
β | 55.75 / 11.57 / 57.67 |
V100 (batch size: 4)
Pipeline | torch 2.0 - no compile |
torch nightly - no compile |
torch 2.0 - compile |
torch nightly - compile |
---|---|---|---|---|
SD - txt2img | 5.96 | 5.89 | 6.83 | 6.86 |
SD - img2img | 5.90 | 5.91 | 6.81 | 6.82 |
SD - inpaint | 5.99 | 6.03 | 6.93 | 6.95 |
SD - controlnet | 4.26 | 4.29 | 4.92 | 4.93 |
IF | 15.41 | 14.76 | β | 22.95 |
V100 (batch size: 16)
Pipeline | torch 2.0 - no compile |
torch nightly - no compile |
torch 2.0 - compile |
torch nightly - compile |
---|---|---|---|---|
SD - txt2img | 1.66 | 1.66 | 1.92 | 1.90 |
SD - img2img | 1.65 | 1.65 | 1.91 | 1.89 |
SD - inpaint | 1.69 | 1.69 | 1.95 | 1.93 |
SD - controlnet | 1.19 | 1.19 | OOM after warmup | 1.36 |
IF | 5.43 | 5.29 | β | 7.06 |
T4 (batch size: 1)
Pipeline | torch 2.0 - no compile |
torch nightly - no compile |
torch 2.0 - compile |
torch nightly - compile |
---|---|---|---|---|
SD - txt2img | 6.9 | 6.95 | 7.3 | 7.56 |
SD - img2img | 6.84 | 6.99 | 7.04 | 7.55 |
SD - inpaint | 6.91 | 6.7 | 7.01 | 7.37 |
SD - controlnet | 4.89 | 4.86 | 5.35 | 5.48 |
IF | 17.42 / 2.47 / 18.52 |
16.96 / 2.45 / 18.69 |
β | 24.63 / 2.47 / 23.39 |
T4 (batch size: 4)
Pipeline | torch 2.0 - no compile |
torch nightly - no compile |
torch 2.0 - compile |
torch nightly - compile |
---|---|---|---|---|
SD - txt2img | 1.79 | 1.79 | 2.03 | 1.99 |
SD - img2img | 1.77 | 1.77 | 2.05 | 2.04 |
SD - inpaint | 1.81 | 1.82 | 2.09 | 2.09 |
SD - controlnet | 1.34 | 1.27 | 1.47 | 1.46 |
IF | 5.79 | 5.61 | β | 7.39 |
T4 (batch size: 16)
Pipeline | torch 2.0 - no compile |
torch nightly - no compile |
torch 2.0 - compile |
torch nightly - compile |
---|---|---|---|---|
SD - txt2img | 2.34s | 2.30s | OOM after 2nd iteration | 1.99s |
SD - img2img | 2.35s | 2.31s | OOM after warmup | 2.00s |
SD - inpaint | 2.30s | 2.26s | OOM after 2nd iteration | 1.95s |
SD - controlnet | OOM after 2nd iteration | OOM after 2nd iteration | OOM after warmup | OOM after warmup |
IF * | 1.44 | 1.44 | β | 1.94 |
RTX 3090 (batch size: 1)
Pipeline | torch 2.0 - no compile |
torch nightly - no compile |
torch 2.0 - compile |
torch nightly - compile |
---|---|---|---|---|
SD - txt2img | 22.56 | 22.84 | 23.84 | 25.69 |
SD - img2img | 22.25 | 22.61 | 24.1 | 25.83 |
SD - inpaint | 22.22 | 22.54 | 24.26 | 26.02 |
SD - controlnet | 16.03 | 16.33 | 17.38 | 18.56 |
IF | 27.08 / 9.07 / 31.23 |
26.75 / 8.92 / 31.47 |
β | 68.08 / 11.16 / 65.29 |
RTX 3090 (batch size: 4)
Pipeline | torch 2.0 - no compile |
torch nightly - no compile |
torch 2.0 - compile |
torch nightly - compile |
---|---|---|---|---|
SD - txt2img | 6.46 | 6.35 | 7.29 | 7.3 |
SD - img2img | 6.33 | 6.27 | 7.31 | 7.26 |
SD - inpaint | 6.47 | 6.4 | 7.44 | 7.39 |
SD - controlnet | 4.59 | 4.54 | 5.27 | 5.26 |
IF | 16.81 | 16.62 | β | 21.57 |
RTX 3090 (batch size: 16)
Pipeline | torch 2.0 - no compile |
torch nightly - no compile |
torch 2.0 - compile |
torch nightly - compile |
---|---|---|---|---|
SD - txt2img | 1.7 | 1.69 | 1.93 | 1.91 |
SD - img2img | 1.68 | 1.67 | 1.93 | 1.9 |
SD - inpaint | 1.72 | 1.71 | 1.97 | 1.94 |
SD - controlnet | 1.23 | 1.22 | 1.4 | 1.38 |
IF | 5.01 | 5.00 | β | 6.33 |
RTX 4090 (batch size: 1)
Pipeline | torch 2.0 - no compile |
torch nightly - no compile |
torch 2.0 - compile |
torch nightly - compile |
---|---|---|---|---|
SD - txt2img | 40.5 | 41.89 | 44.65 | 49.81 |
SD - img2img | 40.39 | 41.95 | 44.46 | 49.8 |
SD - inpaint | 40.51 | 41.88 | 44.58 | 49.72 |
SD - controlnet | 29.27 | 30.29 | 32.26 | 36.03 |
IF | 69.71 / 18.78 / 85.49 |
69.13 / 18.80 / 85.56 |
β | 124.60 / 26.37 / 138.79 |
RTX 4090 (batch size: 4)
Pipeline | torch 2.0 - no compile |
torch nightly - no compile |
torch 2.0 - compile |
torch nightly - compile |
---|---|---|---|---|
SD - txt2img | 12.62 | 12.84 | 15.32 | 15.59 |
SD - img2img | 12.61 | 12,.79 | 15.35 | 15.66 |
SD - inpaint | 12.65 | 12.81 | 15.3 | 15.58 |
SD - controlnet | 9.1 | 9.25 | 11.03 | 11.22 |
IF | 31.88 | 31.14 | β | 43.92 |
RTX 4090 (batch size: 16)
Pipeline | torch 2.0 - no compile |
torch nightly - no compile |
torch 2.0 - compile |
torch nightly - compile |
---|---|---|---|---|
SD - txt2img | 3.17 | 3.2 | 3.84 | 3.85 |
SD - img2img | 3.16 | 3.2 | 3.84 | 3.85 |
SD - inpaint | 3.17 | 3.2 | 3.85 | 3.85 |
SD - controlnet | 2.23 | 2.3 | 2.7 | 2.75 |
IF | 9.26 | 9.2 | β | 13.31 |
μ°Έκ³
- Follow this PR for more details on the environment used for conducting the benchmarks.
- For the IF pipeline and batch sizes > 1, we only used a batch size of >1 in the first IF pipeline for text-to-image generation and NOT for upscaling. So, that means the two upscaling pipelines received a batch size of 1.
Thanks to Horace He from the PyTorch team for their support in improving our support of torch.compile()
in Diffusers.
- λ²€μΉλ§ν¬ μνμ μ¬μ©λ νκ²½μ λν μμΈν λ΄μ©μ μ΄ PRμ μ°Έμ‘°νμΈμ.
- IF νμ΄νλΌμΈμ λ°°μΉ ν¬κΈ° > 1μ κ²½μ° μ²« λ²μ§Έ IF νμ΄νλΌμΈμμ text-to-image μμ±μ μν λ°°μΉ ν¬κΈ° > 1λ§ μ¬μ©νμΌλ©° μ μ€μΌμΌλ§μλ μ¬μ©νμ§ μμμ΅λλ€. μ¦, λ κ°μ μ μ€μΌμΌλ§ νμ΄νλΌμΈμ΄ λ°°μΉ ν¬κΈ° 1μμ μλ―Έν©λλ€.
Diffusersμμ torch.compile()
μ§μμ κ°μ νλ λ° λμμ μ€ PyTorch νμ Horace Heμκ² κ°μ¬λ립λλ€.