UNIST-Eunchan's picture
Update README.md
6558c20
|
raw
history blame
3.64 kB
metadata
base_model: google/pegasus-x-base
tags:
  - generated_from_trainer
datasets:
  - ccdv/arxiv-summarization
model-index:
  - name: Paper-Summarization-ArXiv
    results:
      - task:
          name: Summarization
          type: summarization
        dataset:
          name: ccdv/arxiv-summarization
          type: ccdv/arxiv-summarization
          config: section
          split: test
          args: section
        metrics:
          - name: ROUGE-1
            type: rouge
            value: 43.2305
          - name: ROUGE-2
            type: rouge
            value: 16.6571
          - name: ROUGE-L
            type: rouge
            value: 24.4315
          - name: ROUGE-LSum
            type: rouge
            value: 33.9399
license: bigscience-openrail-m
language:
  - en
metrics:
  - rouge
library_name: transformers
pipeline_tag: summarization

Paper-Summarization-ArXiv

This model is a fine-tuned version of google/pegasus-x-base on the arxiv-summarization dataset.

It achieves the following results on the evaluation set:

  • Loss: 2.0127

Training results

Training Loss Epoch Step Validation Loss
2.6153 1.0 3172 2.1045
2.202 2.0 6344 2.0511
2.1547 3.0 9516 2.0282
2.132 4.0 12688 2.0164
2.1222 5.0 15860 2.0127

Model description

More information needed

Intended uses & limitations

Paper Summarization

Compare to Baseline

  • Pegasus-X-base zero-shot Performance:

    • R-1 | R-2 | R-L | R-LSUM : 6.2269 | 0.7894 | 4.6905 | 5.4591
  • This model

    • R-1 | R-2 | R-L | R-LSUM : 43.2305 | 16.6571 | 24.4315 | 33.9399 at
    model.generate(input_ids =inputs["input_ids"].to(device),
                                attention_mask=inputs["attention_mask"].to(device),
                                length_penalty=1, num_beams=2, max_length=128*4,min_length=150, no_repeat_ngram_size= 3, top_k=25,top_p=0.95)
      
    
    • R-1 | R-2 | R-L | R-LSUM : 40.8486 | 16.3717 | 25.2937 | 33.6923 (refer to PEGASUS-X's paper) at
    model.generate(input_ids =inputs["input_ids"].to(device),
                                attention_mask=inputs["attention_mask"].to(device),
                                length_penalty=1, num_beams=1, max_length=128*2,top_p=1)
    
    • R-1 | R-2 | R-L | R-LSUM : 38.1317 | 15.0357 | 23.0286 | 30.9938 (Diverse Beam-Search Decoding) at
    model.generate(input_ids =inputs["input_ids"].to(device),
                                attention_mask=inputs["attention_mask"].to(device),
                                num_beam_groups=5,diversity_penalty=1.0,num_beams=5,min_length=150,max_length=128*4)
    

Training and evaluation data

We use full of dataset 'ccdv/arxiv-summarization'.

Training procedure

We use huggingface-based environment such as datasets, trainer, etc.

Training hyperparameters

The following hyperparameters were used during training:

learning_rate: 1e-05,
train_batch_size: 1,
eval_batch_size: 1,
seed: 42,
gradient_accumulation_steps: 64,
total_train_batch_size: 64,
optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08,
lr_scheduler_type: linear,
lr_scheduler_warmup_steps: 1586,
num_epochs: 5

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.0.1
  • Datasets 2.12.0
  • Tokenizers 0.13.2